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ABSTRACT
◥

Purpose: Treatment of metastatic melanoma has dramatically

improved in recent years, thanks to the development of immuno-

therapy and BRAF-MEK–targeted therapies. However, these devel-

opments revealed marked heterogeneity in patient response, which

is yet to be fully understood. In this work, we aimed to associate the

proteomic profiles of metastatic melanoma with the patient clinical

information, to identify protein correlates with metastatic location

and prior treatments.

Experimental Design:We performed mass spectrometry–based

proteomic analysis of 185 metastatic melanoma samples and fol-

lowed with bioinformatics analysis to examine the association of

metastatic location, BRAF status, survival, and immunotherapy

response with the tumor molecular profiles.

Results: Bioinformatics analysis showed a high degree of func-

tional heterogeneity associated with the site of metastasis. Lung

metastases presented higher immune-related proteins, and higher

mitochondrial-related processes, which were shown previously to

be associated with better immunotherapy response. In agreement,

epidemiological analysis of data from theNational Cancer Database

showed improved response to anti-programmed death 1, mainly in

patients with lung metastasis. Focus on lung metastases revealed

prognostic and molecular heterogeneity and highlighted potential

tissue-specific biomarkers. Analysis of the BRAF mutation status

and prior treatments withMAPK inhibitors proposed themolecular

basis of the effect on immunotherapy response and suggested

coordinated combination of immunotherapy and targeted therapy

may increase treatment efficacy.

Conclusions: Altogether, the proteomic data provided novel

molecular determinants of critical clinical features, including the

effects of sequential treatments and metastatic locations. These

results can be the basis for development of site-specific treatments

toward treatment personalization.

Introduction
Melanoma comprises only 5% of skin cancers but causes the

majority of skin cancer–related deaths (1, 2), primarily due to high

rates of growth and metastasis (3). The most common sites for initial

melanoma metastases are the skin, subcutaneous tissue, and lymph

nodes, while distant and visceral metastases are most common in the

lung, brain, liver, gastrointestinal tract, and bone (4). Organ-specific

colonization suggests that the tumor cells adapt their cellular pheno-

type to suit the demands of the organ colonized (5, 6). The diversity

of phenotypes of different metastatic locations is reflected in the

patient’s clinical outcome; for example, patients with lung metastases

present better overall survival (OS) than patients with other visceral

metastases, as reflected in the melanoma tumor–node–metastasis

staging (7–9). However, the underlying molecular differences between

metastatic locations and the association with treatment response and

prognosis have not been studied on a global scale.

In the past decade, there has been a significant improvement in the

treatment and OS of patients with advanced-stage melanoma, with the

development of two main therapeutic strategies: MAPK pathway–

targeted therapy (e.g., vemurafenib) for patients with BRAF V600E

mutation and immunotherapy. Immunotherapy includes two main

approaches: immune checkpoint inhibitors, primarily targeting the

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) or the pro-

grammed death 1 (PD-1) and adoptive cell transfer (ACT) of tumor-

infiltrating lymphocytes (TILs). Although targeted therapies achieve

rapid clinical responses, most patients develop acquired resistance,

leading to tumor relapse. In contrast, immunotherapy achieves long-

term tumor regression in approximately 50% of patients (10–14).

Interestingly, the treatment of BRAF-mutant tumors with MAPK

inhibitors (MAPKis) has been shown to elevate the immune activity

in the tumor microenvironment (15), and it has been suggested that

long-term benefit from MAPKis is strongly associated with immune-

related adverse events (16). In agreement, a combination of MAPKis

and checkpoint inhibitors led to a synergistic antitumor effect in

mouse models (17–20). In contrast, prolonged treatment and devel-

oped resistance to MAPKis reduced immune activity in the tumor

microenvironment (21–24). Therefore, sequential treatment combi-

nations require deeper molecular understanding of short- and long-

term treatment responses.

In a previous study of melanoma response to immunotherapy, we

showed a connection between mitochondrial activity and lipid metab-

olism, and immune activity and response to TILs and anti–PD-1

treatment (25). Association between immune andmetabolic processes

has also been shown to be affected by metastatic location, and
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specifically brainmetastases (26), by theBRAFmutation status (27, 28),

and resistance to MAPKis (21). In this work, we assembled an

integrated cohort from both published (25) and unpublished

resources. It includes 185 formalin-fixed, paraffin-embedded (FFPE)

samples originating from patients with advanced-stage melanoma

treated with TILs, anti–PD-1, or anti–CTLA-4 therapy.We performed

clinical proteomic analysis of melanoma to associate the clinical

parameters of metastatic location, BRAF status, survival, and immu-

notherapy responsewith themolecular tumor profiles. Together, using

these analyses, we found protein features associated with clinical

parameters that may influence response and resistance to immune

and targeted therapies.

Materials and Methods
Tumor sample collection and proteomics sample preparation

Clinical samples were prepared as described previously (25). Briefly,

185 stage IV samples were macrodissected from FFPE tumor sections

to enrich for tumor cells. Of the 185 samples, 116 were included in

Harel and colleagues (25), and are referred to as theHarel cohort, while

69 samples are newly added and are referred to as the Beck cohort.

Samples were taken mainly shortly before (n ¼ 173) or after (n ¼ 12)

the indicated immunotherapy regimen (Supplementary Table S1A).

The study was conducted in accordance with the Declaration of

Helsinki, upon approval of the Institutional Review Board (IRB)

Committees of the Sheba Medical Center (Tel Hashomer, Israel)

and Tel Aviv University (Tel Aviv, Israel), and upon the patients’

written informed consent. To obtain accurate proteome quantifi-

cation, we designed a super-SILAC mix, which was composed of five

SILAC-labeled melanoma cell lines that served as a reference for

normalization (29, 30). For the Beck cohort, extracted tissues were

lysed with 50% 2-2-2 trifluoroethanol and 25 mmol/L ABC. Samples

were incubated for 1 hour at 99�C, sonicated, and centrifuged at

20,000 � g. Following protein determination using the fluoresca-

mine protein quantification assay, the heavy-labeled super-SILAC

standard lysate and the tumor lysates were mixed at a 1:1 ratio. The

super-SILAC mix was prepared as described previously (25). Pro-

teins were reduced using 5 mmol/L DTT, alkylated with 15 mmol/L

iodoacetamide, diluted with 50 mmol/L ammonium bicarbonate,

followed by overnight digestion with Lys-C-Trypsin mix (1:100

enzyme-to-protein ratio) and Trypsin (Promega, 1:50 enzyme-to-

protein ratio). Peptides were then acidified with 1% trifluoroacetic

acid, separated into five fractions using strong cation exchange

(SCX) chromatography in a stage tip format, and purified on C18

stage tips.

LC/MS-based proteomics

Mass spectrometry (MS)–based proteomic analyses were per-

formed as described in Harel and colleagues (25). Briefly, peptides

were separated by reverse-phase chromatography using the nano-ultra

high-performance liquid chromatography system (Easy-nLC1000,

Thermo Fisher Scientific), coupled to the Q-Exactive HF or Q-

Exactive Plus Mass Spectrometers (Thermo Fisher Scientific; ref. 31).

In the Beck cohort, fractionated peptides were separated with 140

minutes linear gradients of water/acetonitrile; one fractionated sample

was analyzed with 220 minutes gradient and seven samples with low

amounts were analyzed with 240 minutes gradients without prefrac-

tionation. The resolutions of the MS and MS-MS spectra were 70,000

and 17,500 forQ-Exactive Plus, respectively. The resolutions of theMS

and MS-MS spectra were 60,000 and 30,000 for Q-Exactive HF,

respectively. The m/z range was set to 300–1,700 or 380–1,800 Th.

MS data were acquired in a data-dependentmode, with target values of

3Eþ06 and 1Eþ05 or 5Eþ04 for MS and MS-MS scans, respectively,

and a top-10 method.

Raw MS data are available via ProteomeXchange with identifiers

PXD006003 and PXD020618.

Proteomics raw MS data processing

MS raw files of all samples were jointly analyzed by Max-

Quant (32) version 1.6.2.6 and the integrated Andromeda search

engine (33). MS-MS spectra were referenced to the UniProt human

proteome (http://www.uniprot.org/) released in April 2018. FDR of

0.01 was used on both the peptide and protein levels. Peptides were

allowed to have methionine oxidation and N-terminal acetylation as

variable modifications and cysteine carbamidomethyl as a fixed

modification. The “match between runs” option was enabled to

transfer identification between separate LC/MS-MS runs based on

their accurate mass and retention time after retention time align-

ment. The settings for the SILAC-labeled tumor sample runs

included Lys-8 and Arg-10 as heavy labels.

Data preprocessing and statistical analysis

Analyses were performed using the Perseus software version

1.6.2.3 (34), R environment, GraphPad Prism (www.graphpad.com),

and IBMSPSS software. For all proteomic analyses, the proteinGroups

output table was used. Reverse proteins, proteins that were only

identified by site, and potential contaminants (excluding keratins)

were filtered out, and normalized ratio tumor/SILAC data were log2
transformed.We identified 10,178 proteins in total, but to retain high-

quality quantifications, protein groups were filtered to have valid

values in at least 60% of the samples, reaching a list of 4,883 protein

groups, which were further used for all downstream analyses. To

minimize technical variability and eliminate the risk of global differ-

ences between samples, data were normalized by subtracting most

frequent value (modal value) in the distribution of each sample. The

initial dataset consisted of 185 samples and we excluded samples with

less than 3,500 proteins (11 samples). The remaining 174 samples were

taken for further analysis. Low expression proteins can lead to missing

values, therefore, missing value imputation was performed sample

wise by drawing values from a normal distribution, with a downshift of

Translational Relevance

Immunotherapy and targeted therapies have dramatically chan-

ged the treatment of metastatic melanoma; however, the hetero-

geneity of these tumors enables only a fraction of patients to achieve

a complete therapeutic response.Using awell-annotatedmetastatic

melanoma dataset revealed, for the first time, the proteomic

heterogeneity among metastatic sites and developed resistance to

targeted therapy. Specifically, analyses showed functional hetero-

geneity among metastatic sites that potentially explains clinical

differences in prognosis and treatment response. In addition,

unsupervised analysis of the proteomes of lung metastases discov-

ered three clusters, which differed in prognosis and functional

characteristics. Analysis of BRAF mutation and targeted therapy

revealed functional differences that can contribute to treatment

regimens decisions. Together, these results may have major impli-

cations on the clinic, on the development of tissue-specific bio-

markers, and the coordination of treatment regimens that can

eliminate the development of treatment resistance.

Melanoma Proteomics Reveal Metastases Molecular Diversity
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1.6 SDs and a width of 0.4 of the original ratio distribution width of

each sample (34). Batch effect originating from dataset integration was

corrected by performing linear modeling using the R limma package

(ref. 35; Supplementary Fig. S1A and S1B; Supplementary Table S1A).

For the organ tissue contamination test (Supplementary Fig. S1C and

S1D), we used organ-specific transcriptomic-based gene signatures

from the Human Proteome Atlas database (http://www.proteinatlas.

org). Signatures were based on the “enriched genes” signature, a list of

genes that have at least 4-fold higher mRNA level in a selected tissue,

when compared with any other tissue. For the skin comparison, we

omitted subcutaneous samples from the “others” group due to their

inherent similarity. For the lung comparison, we used the elevated

genes signature because the enriched genes signature contains only

13 genes that were mostly absent in our data. The median expression

level of the proteins in each signaturewas calculated separately for each

sample and compared using Student t test. Student t tests andANOVA

tests were performed using the R limma package and Prism software.

One-dimensional (1D) annotation enrichment analyses, two-

dimensional (2D) annotation enrichment analyses (36), and Fisher

exact test enrichment analyses were performed in the Perseus software

with Benjamini–Hochberg FDR < 0.02. The 1D annotation enrich-

ment analyses were performed on the median fold changes between

groups and tested for significant differences between the distribution

of proteins of any category [gene ontology (GO) and Kyoto Encyclo-

pedia of Genes and Genomes (KEGG)] and the overall protein

ratio distribution (Wilcoxon–Mann–Whitney test). The 2D annota-

tions enrichment analysis is similar to the 1D test, but examines the

differences between two-sample ratios simultaneously (36).

Kaplan–Meier and log-rank tests were performed using Prism

and the R’s survival and survminer packages. Logistic regression

was performed in SPSS (Supplementary Table S2E). For the upre-

gulated protein network analysis, we used the STRING database to

derive the protein–protein interaction information within each

group. The STRING database determines protein–protein interac-

tions based on publicly available sources and data mining (37).

Next, to combine two networks, we used the Cytoscape software (38)

and the DyNet plugin (39). Biological annotations were taken from

GO (40) and KEGG (41).

Weighted gene correlation network analysis and unsupervised

clustering

Weighted gene correlation network analysis (WGCNA) was per-

formed in the Perseus software (42, 43). We used a soft-threshold

beta power ¼ 12 to create a robust signed network (Supplementary

Fig. S2A). We calculated the Pearson correlations between the

module eigengene and clinical annotations. For the unsupervised

clustering approach of the lung metastases, we applied the consensus

clustering algorithm (44) using R package ConsensusClusterPlus

(45). Parameters used were: maximal number of clusters, six;

number of iterations, 1,000; subsampling fraction, 0.8; clustering

algorithm, hierarchical; and distance matrix, Pearson correlation.

Before applying the algorithm ratios across proteins, samples were

Z-score normalized.

IHC staining

FFPE tumor blocks were obtained from the Institute of Pathology at

the Sheba Medical Center (Tel Hashomer, Israel). For the HLA-DR

staining, five slides were stained per group (lung and lymph node) with

anti–HLA-DR antibody (ab166777, Abcam). Staining was performed

using the BOND-III Automated Staining Platform (Leica Biosystems),

following selected protocol for the BondPolymer RefineRedDetection

Kit (Leica Biosystems). For the CD8 staining, three slides were stained

per group (lung and lymph node) with anti-CD8 antibody (CRM311,

BioCareMedica), one slide from the lung group was already published

in Harel and colleagues (25). Staining was performed by using

Benchmark XT Staining Module (Ventana Medical Systems). All

slides were scanned using the Leica Aperio VERSA Digital Pathology

Scanner (Aperio Technologies). Staining quantification was per-

formed by using the Aperio eSlide Manager software. Percentages of

positively stained cells were used for downstream statistical analysis

(Student t test).

Epidemiology analysis

Data source and patient population

Patient cohort was derived from the National Cancer Database

(NCDB), a hospital-based cancer registry, with data assessed from

2004 to 2015 (46). The NCDB captures more than 70% of cancer

diagnoses in the United States from >1,500 hospitals with cancer

programs accredited by the American College of Surgeons and the

American Cancer Society. The cohort included all individuals with

stage IV melanoma who received immunotherapy as first-line treat-

ment. The study was approved by the IRB at the Hospital of the

University of Pennsylvania (Philadelphia, PA).

Variables definition

The primary exposure of interest was the site of metastasis.

All four metastatic sites defined in the NCDB were used for the

analysis (lung, liver, bone, and brain). Additional covariates

included age, sex, race (categorized as White, African American,

or other/unknown), and patient comorbidities (Charlson–Deyo

comorbidity condition).

Outcome definition

The primary outcome of interest was median OS, measured from

the time of cancer diagnosis until death from any cause or last

follow-up.

Statistical analysis for clinical cohort

Patients were grouped, according to time of diagnosis, into those

who were diagnosed between 2004 and 2013, when anti–PD-1 was not

standard of care in the United States, and 2014–2015, when anti–PD-1

became FDA approved. Baseline characteristics were compared using

x
2 test for categorical variables and Wilcoxon rank-sum test for

nonnormal continuous variables. Differences in OS were compared

between patients with either site ofmetastasis. HR and 95% confidence

intervals were calculated using the Cox proportional hazards model.

Survival curves for time-to-event variables were estimated using the

Kaplan–Meier method. All statistical analyses were performed using

STATA/IC software 15.0 (StataCorp). A two-sidedP≤ 0.05was used to

define significance.

BRAF inhibitors developed resistance assay

For the BRAFi-resistant (BRAFi-R) model, we chose the A375 cell

line, which is BRAF mutated and BRAFi sensitive. The cells were

cultured in DMEM (Biological Industries) supplemented with 10%

FBS (Biological Industries) and 1% antibiotics (Biological Industries).

The cells were routinely verified to beMycoplasma free by using PCR

Detection Kit (Hy-Mycoplasma Detection Kit, Biolabs). Cell line

authentication was performed at theGenomics Core Facility of BioRap

Technologies and the Rappaport Research Institute (Technion, Israel),

using the Promega Power Plex 16 HS kit to determine short tandem

repeat profiles. To obtain resistant cell line, we challenged the cells

Beck et al.
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with increasing concentrations of vemurafenib (PLX4032, Selleck-

chem). Starting with a concentration matching the IC50 values of

the na€�ve cells, (0.14 mmol/L), vemurafenib concentrations were

increased every 7 days, for 9 weeks. We ended the selection protocol

after 9 weeks when we observed a 100-fold increase in the IC50

value, finally treating A375 cell line with 5 mmol/L of the drug

(Supplementary Fig. S7A and S7B). In parallel, we maintained the

parental cell lines for 9 weeks as a control.

Flow cytometry

A375 vemurafenib–sensitive cell line and A375 vemurafenib–

resistant cell lines were cultured in DMEM supplemented with 10%

FBS, 1% antibiotics, and with or without the indicated vemurafenib

treatment (0.5 or 20 mmol/L) for 72 hours. Cells were gently detached

from the plateswith 1mmol/L EDTA,washedwith PBS, and incubated

with HLA antibodies (BD Biosciences, catalog Nos. 560896 and

560965) at a 1:10 ratio in FACS buffer containing 1% dialyzed FBS,

1 mmol/L EDTA, and 25 mmol/L HEPES in PBS. Measurements were

performed using the CytoFLEX-4L Flow Cytometer (Beckman Coul-

ter). Only live cells were analyzed by negative selection using DAPI.

Three biological replicates were analyzed.

Results
Integration of melanoma proteomic data and patient clinical

information

Aiming to associate molecular profiles of melanoma with clinical

parameters, we assembled an integrated melanoma proteomic dataset,

consisting of 185 metastatic melanoma tumors. We combined pub-

lished and unpublished datasets analyzed in our laboratory. The

published data were obtained from Harel and colleagues (25), with

a total of 116 samples (42 TIL-treated and 74 anti-PD1–treated

patients). Our final cohort was composed of 185 advanced-stagemela-

noma samples and included 86 patients treated with TIL-based

therapy, 79 patients treated with anti–PD-1, and 20 patients treated

with anti–CTLA-4. Eleven of the samples were filtered because of poor

quality, and 174 samples were used for downstream analyses. Samples

were taken mainly shortly before (n ¼ 162) or after (n ¼ 12) the

indicated immunotherapy regimen (Fig. 1A; Supplementary

Table S1A). Each treatment group was separated into immunotherapy

responders (complete and partial responders) and nonresponders

(stable and progressive disease; Fig. 1B). Each of the immunotherapy

treatment groups presented high variability of prior treatments and

metastatic locations, which provided another layer of analysis of the

tumor proteome (Fig. 1B). First, we characterized the tumors accord-

ing to the metastatic site (a minimum of five tumors/group) and

focused on metastases excised from lymph nodes, subcutaneous, skin,

lung, liver, brain, bone, and small bowel (Fig. 1C; Supplementary

Table S1A). Next, we characterized the cohort according to the BRAF

mutation status and prior treatment with MAPKis (Fig. 1D; Supple-

mentary Table S1A). From the 174 samples, 64 wereBRAFmutant and

90 were BRAF wild-type (WT; 20 patients were with unknown BRAF

status). Among the BRAF-mutant samples, 19 were treated with

MAPKis, and were considered treatment resistant at the time of tumor

resection (4 patients had primary resistance and 15 developed acquired

resistance), 42 were treatment na€�ve, and three were with unknown

treatment status (Fig. 1D; Supplementary Table S1A). First, aiming to

validate the reliability of the combined cohort, we examined the

influence of known biomarkers on prognosis, and found longer

survival in patients with higher expression levels of proteins involved

in IFNg signaling, MHC class I, and MHC class II (Fig. 1E).

Proteomic analysis of melanoma metastases from different

locations reveals distinct cellular processes

Initial bioinformatic analysis examined the functional differences

between different metastatic locations. A comparison between the

median fold change of the protein levels in each site with all other sites

showed location-specific enriched processes (1D annotation enrich-

ment analysis, FDR q-value < 0.02; Fig. 2A; Supplementary

Table S1D). Remarkably, we found a general association between

normal tissue function and the processes enriched in the metastases

(e.g., fatty acid metabolism in the liver). Given the precise dissection of

the tumor regions, we speculated that it reflects the effects of the

microenvironment on the tumor cells. To verify that enriched pro-

cesses do not result from tissue contamination, we used organ-specific

signatures and compared themedian expression levels of the signature

proteins in every organ with all other tissues (Supplementary Fig. S1C;

Supplementary Table S1E). Analysis of the enriched genes signature,

based on the Human Protein Atlas gene expression datasets, showed

insignificant differences in signature expression between the organ-

specific location and the rest of the dataset, except for brain metastases

that were found to have low expression levels of the organ signature.

Significance, in this case, was obtained because of one outlier brain

metastasis sample (Supplementary Fig. S1C). The liver signature

showed higher expression levels in liver metastases, although the

difference was insignificant (Supplementary Fig. S1C). To better

understand whether this phenomenon is derived from liver contam-

ination or tumor cells’ adaptation, we divided the liver signature into

two groups: proteins involved in coagulation and inflammation, and

proteins involved in metabolic processes (Supplementary Table S1E).

Interestingly, the metabolic signature was significantly higher in liver

metastases, while coagulation and inflammation signatures were

similar to the metastases from other tissues, supporting tumor cell

adaptation and negligible tissue contamination (Supplementary

Fig. S1D).

Examination of different metastatic locations found the highest

enrichment of immune-related processes in lung metastases, repre-

sented by MHC and TAP protein complexes and IFNg signaling

(Fig. 2A; Supplementary Fig. S1E). These results may provide a

functional explanation for the favorable clinical outcome ofmelanoma

lung metastases (7–9). High MHC levels and immune activity were

also found in skin and subcutaneous metastases, while low immune

activity was observed in lymph node, brain, and small bowel metas-

tases (Fig. 2A; Supplementary Fig. S1E). In addition to low immune-

related protein expression, and in agreement with Fischer and col-

leagues (26), brain metastases also showed high oxidative phosphor-

ylation (OXPHOS) and NADH dehydrogenase complex (Fig. 2A;

Supplementary Fig. S1F). Higher mitochondrial activity was also

enriched in lung metastases, suggesting a positive association between

immune and mitochondrial activities in the lung, while having a

negative association in brain metastases. Liver metastases showed

high fatty acid metabolism (Fig. 2A; Supplementary Fig. S1G), while

the highest protein translation activity and extracellular matrix

(ECM)-related processes were shown in lymph node metastases

(Fig. 2A). The highest enrichment of proliferation-related annotations

was observed in bone and small bowel metastases (Fig. 2A; Supple-

mentary Fig. S1H).

Next, we took a complementary approach and performed

WGCNA. This method separates the proteomic data into modules

of highly correlated proteins. Every module has a module eigengene,

which enables the calculation of correlation to the clinical features

of the samples (42). We found nine protein modules that had

significant correlations between the module’s eigengene and the

Melanoma Proteomics Reveal Metastases Molecular Diversity
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metastatic location (positive or negative correlations, Pearson

correlation P < 0.05; Fig. 2B; Supplementary Fig. S2A and S2B;

Supplementary Table S1F). Enrichment analysis of the proteins in

each module reinforced the previous analysis (Fisher exact test

enrichment, FDR q-value < 0.02). For example, higher immune

activity was found in lung and subcutaneous metastases and lower

immune activity in lymph node, brain, and small bowel metastases

(Fig. 2B; Supplementary Table S1F).
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Integration of melanoma proteomic cohort. A, Timeline of patient treatment and tumor resection. B, Clinical parameters of the samples were collected from

185 patients with advanced-stage melanoma. OS, metastatic location, immunotherapy and targeted therapy status, and additional clinical parameters are indicated

(LN, lymph node; SB, small bowel; SC, subcutaneous; other refers to all siteswith less than five tumors). See also Supplementary Table S1A.C, Pie chart of the number

of samples taken from each metastatic location. “Others” refer to metastatic locations with less than five samples. See also Supplementary Table S1A. D, Pie chart

of the number of samples taken from BRAF WT and mutation carriers. BRAF mutation carriers are divided into MAPKi-resistant and -na€�ve patients. NA refers

to patients with missing clinical annotations. See also Supplementary Table S1A. E, Kaplan–Meier plots of the expression levels (above and below median) of

IFNg-mediated signaling pathway signature (based on GO database), MHC class I, and MHC class II show significant differences in OS. Analysis includes all 174

samples in the cohort. GO annotations for all the proteins are available in Supplementary Table S1C.
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Figure 2.

Functional and clinical differences associated with metastatic locations. A, 1D annotation enrichment analysis performed on the median fold change of every

metastatic location compared with all other samples shows selected functional annotations enriched in each metastatic location (FDR q-value < 0.02). See also

Supplementary Table S1D. B, WGCNA of 144 melanoma samples (excluding metastatic locations with less than five samples) shows the correlation of module

eigengenes (colors) with each metastatic location (bottom heatmap; � , P < 0.05; �� , P < 0.01). Enrichment analysis for the different modules is presented in the top

heatmap (Fisher enrichment test, FDR q-value < 0.02). See also Supplementary Table S1F. C, Hierarchical clustering of the significantly changing proteins between

metastatic locations (ANOVA FDR q-value < 0.1). Values are Z-scores of themedian expression levels of eachmetastatic site. See also Supplementary Table S1G. LN,

lymph node; SB, small bowel; SC, subcutaneous.
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Supervised comparison among all metastatic locations identified

44 significantly changing proteins (ANOVA FDR q-value < 0.1;

Fig. 2C; Supplementary Table S1G). Among them, we found higher

expression of the SLC2A1/GLUT1 glucose transporter in the brain

metastases, higher expression of translation initiation factors

(EIF4E2 and EIF2A) and RNA binding protein (RBM3) in subcu-

taneous, skin, and lymph node metastases, and higher expression of

HLA class II (HLA-DRB1) in lung metastases. In addition, we

detected higher expression of proteins involved in lipid metabolism

in liver metastases. Surprisingly, among these proteins, we found

ACAT1, which we have shown previously to be involved in

improved immunotherapy treatment response (25). A closer exam-

ination of ACAT1 expression across all metastatic sites showed

that it is significantly associated with better survival in the entire

dataset, and especially in lung metastases (Fig. 2C; Supplementary

Fig. S2C). These results show that biomarkers may largely depend

on the metastatic location.

To validate the finding of increased immune activity in lung

metastasis, we performed IHC staining to compare the expression of

HLA-DR and CD8 in lung and lymph node metastases (Fig. 3A and

B). Immunostaining showed significantly higher levels of both mar-

kers in lung metastases, in agreement with the proteomics data, and

emphasized the variability of cancer–immune interactions in distinct

metastatic locations.

Given the known immune and metabolic effects of BRAFmutation

status and targeted therapy, we examined whether these clinical

parameters may have confounded our conclusions. To that end, we

examined the percentage of BRAF mutation carriers and prior

MAPKi-resistant (primary or acquired) individuals in each metastatic

location group (Supplementary Fig. S2D). Although most of the

metastatic locations had similar percentages of BRAF-mutant and

prior MAPKi-treated patients, the small bowel group had a high

proportion of patients with MAPKi-acquired resistance (three of five

patients), suggesting a potential confounding factor to the small bowel

results. Taken together, these results show the importance of the

metastatic microenvironment in determining the tumor phenotype

and the potential influence on treatment response and patient

prognosis.

Population-based analysis of the association between

metastatic site and response to immunotherapy

To better understand the clinical effect of the unique processes

identified for each metastatic location, we analyzed clinical data from

the NCDB, a hospital-based cancer registry (46). We analyzed the

clinical data from 526,167 individuals that were diagnosed with

melanoma during the years 2004–2015. In this cohort, 19,141 indi-

viduals had a metastatic disease upon diagnosis, of whom 3,407

received first-line immunotherapy and were used for further analysis
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Figure 3.

IHC and epidemiological analyses reveal unique immune activity and clinical outcome in melanoma lung metastases. A, Bar plots of the quantification of CD8

and HLA-DR expression in lung and lymph node metastasis. Error bars represent the SD values. Quantification is based on the percentage of positively stained cells.
� , P <0.05; �� , P <0.01.B,Representative IHC images of HLA-DR (polymer refine red detection kit staining) and CD8 (Dab staining) in lung and lymph nodemelanoma

metastases. Scale bar, 100 mm. C, Analysis of patient OS times according to metastatic site and year of diagnosis (mets, metastasis; N, number of patients;

OS, median OS; mo, months). Data were obtained from the NCDB and include only patients who received first-line immunotherapy. � , P value derived from

Cox proportional hazards model. LN, lymph node.
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(Supplementary Fig. S3A). Because NCDB does not provide the

detailed treatment information for each patient, we grouped the

patients according to the time of diagnosis, in the context of the

approved treatments at each timepoint. The two patient groups

included (i) patients diagnosed between 2004 and 2013, when anti–

PD-1 immunotherapy was not standard of care in the United States

and (ii) patients diagnosed between 2014 and 2015, when anti–PD-1

was FDA approved. A total of 55% of the study cohort (1,871) were

treated during the years 2004–2013 and 45% (1,536) during the years

2014–2015 (Supplementary Fig. S3A). Patient characteristics are pre-

sented in Supplementary Fig. S3B according to the year of diagnosis.

The median follow-up time was 12.7 months [interquartile range

(IQR), 6.2–26.5 months]. OS for the entire study population was

15.8 months (IQR, 7–50.4 months). In agreement with Eggermont

and colleagues (10), survival improved among individuals diagnosed

from 2014 to 2015 compared with 2004–2013 (median OS,

18.2 months; IQR, 6.6–46.8 vs. 14.8 months; IQR, 7.1–40.9 months,

respectively; P < 0.001), however, beyond these known differences, we

examined the association of this improvement with the site of metas-

tasis. We, therefore, compared patients with first-line immunotherapy

and single-site metastases diagnosed before and after anti–PD-1

became standard of care in the United States. In a subgroup analysis

according to the metastatic site, only individuals who had single-site

metastasis to the lungs at the time of diagnosis had an improved

survival upon anti–PD-1 routine implementation (median OS,

29.3 vs. 22.1 months; P ¼ 0.01), while individuals with metastasis

to the liver, brain, or bone did not have a similar benefit (median

OS, 16.7 vs. 13.3; 20.2 vs. 21; and 18.3 vs. 16.5, respectively; Fig. 3C).

These results show the benefit for survival of anti–PD-1 treatment

for lung metastases compared with other visceral metastases. In

addition, results stand in line with the proteomic results and

highlight the contribution of metastatic site microenvironment to

disease prognosis and response to immunotherapy.

Unsupervised proteomic analysis of melanoma lungmetastases

identifies clinically and biologically distinct clusters

Focusing on single-metastatic sites, we examined whether we can

further cluster the data in an unsupervised manner and associate

clusters with clinical parameters. Because of the lung’s unique immu-

nophenotype, we focused our analysis on this site. Unsupervised

clustering of lung metastases resulted in three clusters that best

separate these tumors. The optimal number of clusters was selected

using quantitative evaluation of the area under the cumulative distri-

bution curve (Fig. 4A; Supplementary Fig. S4A). Kaplan–Meier

analysis depicted a significant difference between the patient clusters

(P ¼ 0.0382); with cluster 1 having the highest survival and cluster 3

having the lowest survival (Fig. 4B). Next, we examined whether the

clusters differ in their immune infiltration using a modified Immune-

Score (26, 47), which originally quantified the presence of immune

cells in the tumor on the basis of transcriptomic expression values of

141 immune-related genes. Of these 141 genes, 36 were identified in

the proteomic dataset and showed significantly higher expression in

clusters 1 and 2 compared with 3 (ANOVA P¼ 0.013; Fig. 4C). The 36

proteins identified in our data included proteins from both adaptive

and innate immune activity (Supplementary Table S2A).

Examination of the significantly changing proteins between the

three lung metastasis clusters identified 277 significantly different

proteins (ANOVAFDRq-value < 0.1). Hierarchical clustering showed

that the significantly changing proteins divided into three protein

clusters in accordance with the sample clusters, and can indicate

cellular processes that differ between clusters (Fig. 4D; Supplementary

Table S2B). ANOVAresults showed higher expression level of proteins

involved in adaptive immune activity in cluster 1 (e.g., TAP2 andHLA-

DRB1), while higher expression of proteins involved in innate immu-

nity (e.g., ORM2, MPO, and GSDMD), proteasome ubiquitin, regu-

lation of nitric oxide synthases (e.g., DDAH1 and DDAH2), and

ribosome was found in cluster 2 (Supplementary Fig. S4B; Supple-

mentary Table S2B). 2D annotation enrichment analysis (36) to

compare the three clusters showed similar results, for example,

relatively higher immune activity (e.g., antigen presentation and IFNg

signaling) and mitochondrial activity in cluster 1 and higher protea-

some activity in cluster 2 (Fig. 4E; Supplementary Fig. S4C; Supple-

mentary Table S2C). Cell growth–promoting proteins and cell

growth–related pathways (e.g., chromosome organization and DNA

binding) were higher in cluster 3 (Fig. 4D and E; Supplementary

Table S2B–S2C), in agreement with the more aggressive phenotype

and lower patient survival.

Next, we examined whether the lung metastasis clusters can high-

light proteins that correlate with survival. To that end, we conducted

a low stringency Student t test with a nominal P value cutoff (P < 0.01)

to look for differentially expressed proteins between clusters 1 and 3

(high and low survival, respectively; Supplementary Table S2D).

Kaplan–Meier test of the 133 differentially expressed proteins iden-

tified eight proteins with a significant positive correlation with survival

and 17 proteins with a significant negative correlation with survival

(P < 0.05; Fig. 4F; Supplementary Fig. S5A). Next, we examined the

specificity of these 25 proteins with lung metastasis, and found only

six of them to be associated with survival in the whole dataset; two

were also significant in subcutaneous metastases and one was signif-

icant in lymph node metastases (Fig. 4F; Supplementary Fig. S5B–

S5D). Similar unsupervised clustering of lymph node and subcutane-

ousmetastases, which also form sufficiently large groups of tumors, did

not identify robust clusters and showed no significant difference in

survival (Supplementary Fig. S6A–S6D). Together, the focused anal-

ysis of lung metastasis unraveled the clinical importance of proteomic

heterogeneity even within a single metastatic site and the importance

of tissue specificity predictive markers.

Functional analysis of BRAF mutation and MAPKis’ treatment

discloses unique immune and metabolic features

Our results showed the effect of the metastatic location on the

proteomic profiles and response to immunotherapy. We next exam-

ined the proteomic effects of additional clinical parameters, primarily

BRAF status. Given that 38% of the patients (n ¼ 64) in our cohort

were BRAFmutation carriers, and of those, 23% (n¼ 15) had acquired

MAPKi resistance and 6% (n¼ 4) had primary MAPKi resistance, we

postulated that examination of the clinical and proteomic data may

highlight novel functional associations with immunotherapy response.

Given the small number of samples that had primary resistance to

MAPKi, we focused on the effect of acquired resistance in the analyses

described below. To examine the independent influence of BRAF

mutation and acquired MAPKi resistance on response to immuno-

therapy, we performed logistic regression analysis and controlled for

age, gender, and immunotherapy treatment group (TIL, anti–PD-1,

anti–CTLA-4; logistic regression P < 0.05; Fig. 5A; Supplementary

Table S2E). In agreement with Ackerman and colleagues (23), statis-

tical analysis of the clinical data showed a significantly higher response

to immunotherapy in the BRAF mutation carriers that were MAPKi

na€�ve, compared with MAPKi-resistant BRAF mutation carriers and

compared with the WT BRAF patients.

To associate the BRAF groups with their molecular func-

tionalities, we performed a 1D annotation enrichment analysis

Melanoma Proteomics Reveal Metastases Molecular Diversity
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(FDR q-value < 0.02) on the median fold change of the proteomic data.

A comparison of the BRAF WT with treatment-na€�ve patients with

BRAF-mutant tumors showed higher levels of immune processes,

mitochondrial respiration, and ECM in the BRAF-mutant treatment-

na€�ve group (Fig. 5B; Supplementary Table S2F). To assess the influence

of developed resistance on MAPKi, we compared the MAPKi-resistant

group with the na€�ve group. Similar to the previous results, we found

higher immune processes, movement, and ECM in the na€�ve group,

however, we found mitochondrial translation to be enriched in the

resistant group (Fig. 5C; Supplementary Table S2G). These results

suggest that developed resistance to MAPKi reduces the tumor immu-

nogenicity, but increasesmitochondrial activity. To further examine this

phenomenon, and to identify the key proteins contributing to these

processes, we plotted a unified protein–protein interaction network of

the proteins that were higher in theMAPKi-na€�ve group comparedwith

the two other groups: BRAF WT and MAPKi-resistant patients (P <

0.05; Fig. 5D; Supplementary Table S2H–S2I). In agreement with the

enrichment analysis results, we found an elevation in mitochondrial

OXPHOS proteins only in comparison with the BRAF WT group and

elevation in HLA proteins and connection to the ECM and cell

movement proteins in comparison with both groups.

To further examine our hypothesis that developed resistance to

MAPKi reduces immune activity, we established a BRAFi-R model

by challenging A375 melanoma cell line with increasing vemur-

afenib concentrations (Supplementary Fig. S7A and S7B). Following

this selection protocol, we examined HLA class I and HLA class II

expression in the vemurafenib-na€�ve and -resistant cells with and

without acute vemurafenib treatment (na€�ve and resistance cells

IC50 values). In agreement with the clinical proteomics data, we

found a significant decrease in HLA expression upon developed

resistance to vemurafenib (Fig. 5E and F; Supplementary Fig. S7C

and S7D). However, upon acute treatment with vemurafenib, HLA-

ABC and HLA-DR were elevated primarily in the control cells, and

resistant cells required 40-fold higher concentrations of the drug to

increase HLA-ABC (Fig. 5E and F; Supplementary Fig. S7C and

S7D). Altogether, these results provide the molecular associates

with treatment resistance and suggest a clinical advantage to

coordinate administration of MAPKis and immunotherapy and

emphasize the need to improve the understanding of treatment

combination timing.

Discussion
Despite the dramatic improvements in metastatic melanoma treat-

ment and outcome, a large proportion of patients remains without a

suitable treatment solution. Therefore, advances in the understanding

of resistance mechanisms to those treatments is an urgent need to

provide suitable treatment in an individualizedmanner and to develop

new treatments for resistant patients. In our previous work, we showed

that the metabolic state of melanoma cells influences the immune

activity within the tumor, suggesting a mechanism of improved

response to immunotherapy (25). In this work, we expanded our

cohort to 185 patients with advanced-stage melanoma, aiming to

associate clinical subgroups with immunotherapy response, and iden-

tify the molecular determinants of each group. The proteomic data

provided novel molecular explanations to critical clinical phenomena,

including the effects of sequential treatments andmetastatic locations.

Examination of the proteomic differences between tumors from

distinct metastatic locations identified a unique combination of cel-

lular processes for each organ. In the lung, we found higher immune

activity and higher mitochondrial activity (Fig. 2A–C). Orthogonal

IHC analysis strengthened this finding and found higher levels of

HLA-DR and CD8 in lung metastases when compared with lymph

node metastases (Fig. 3A and B). These results provide a potential

explanation for the favorable clinical outcome of patients with lung

metastases in comparison with other metastases (Fig. 3C; refs. 8, 9).

Low expression of immune-related proteins, together with high mito-

chondrial activity, was observed in brainmetastases, in agreementwith

Fischer and colleagues (26). Furthermore, we found differences in lipid

metabolism, translation, proliferation, and adhesion processes in the

different metastatic sites (Fig. 2A–C). Because our proteomic cohort

included only a small number of samples originating from brain, liver,

bone, and small bowel metastases, follow-up studies could extend the

functional analysis of metastases to these organs. In addition, further

research of different metastatic locations from the same patients can

improve the understanding of tumor adaptation process to different

environments.

Unsupervised clustering analysis identified clinically relevant

heterogeneity in lung metastases based on the proteomic data

(Fig. 4A–E). In agreement with our previous work (25), high levels

of adaptive immune and mitochondrial proteins were associated

with the group with the highest survival. Interestingly, high levels of

proteins related to innate immunity were associated with the middle

survival cluster, suggesting that different immune-related pathways

affect the clinical outcome (Fig. 4D; Supplementary Fig. S4B).

Furthermore, one of the main characteristics of the middle survival

cluster is high levels of proteins related to the ubiquitin proteasome

system, which emphasizes the protein-level regulation of this cluster

(Fig. 4D and E). The lower survival cluster was mainly enriched

with nuclear proteins and DNA replication processes, thus suggest-

ing a more proliferative phenotype (Fig. 4D and E).

The high proteomic variability among metastatic sites suggests that

these have to be considered in the pathological examination, treatment

decisions, and the search for predictive biomarkers. Our analyses

identified high liver expression levels of ACAT1, which we have shown

previously to increase immunotherapy response in the analysis of the

entire cohort (25). Here, the tissue-specific analysis showed higher

ACAT1 expression in the liver, which is an organ commonly associ-

ated with worse survival and shows ACAT1 correlation with better

survival mainly in lung metastases (Fig. 2C; Supplementary Fig. S2C).

Analysis of proteins that correlate with survival in the lungs showed

that only aminority of the proteins are associatedwith survival in other

tissues (Fig. 4F). This conundrum emphasizes the importance of the

tissue context in the identification of predictive markers. In total, these

analyses highlight the potential to develop tissue-specific therapies (or

combination therapies), specifically for those presenting poorer

responses. This heterogeneity may be specific tometastatic melanoma,

which presents with diverse metastatic locations. However, similar

heterogeneity may be relevant in other highly metastatic tumors as

well, and should be accounted for in clinical diagnostics and treatment

decision-making.

Cohort segregation according to BRAF treatment status unraveled

the functional processes associated with resistance to MAPKi treat-

ment. A similar decrease in immune activity and an increase in

mitochondrial activity upon acquired resistance toMAPKis have been

shown previously using in vitro and immunofluorescence meth-

ods (21, 22, 48). In addition, preclinical models demonstrated that

combination of MAPKis and immunotherapy agents can have an

synergistic effect (17, 23, 49). Our results provide molecular founda-

tion to the potentially additive effect of immunotherapy and MAPKis,

when given together (11, 50), but reinforces the importance of

treatment regimen and timing because developed resistance to
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MAPKis potentially reduces tumor immunity. Since the standard of

care changed in the past few years from a single-BRAFi agent to a

combination of BRAFis andMEKis, this needs to be taken into account

in future laboratory and clinical experiments.

In conclusion, the work presented here shows the critical

significance of the metastatic site, mutation status, and prior

treatment resistance on the pathogenesis and the phenotype of

advanced-stage melanoma, and sheds light on the complex het-

erogeneity of those tumors. The results reveal phenotypic and

molecular foundations for urgent clinical phenomena. The clinical

proteomic analysis also shows the importance of protein-level

analysis, which integrates the genetic information of the tumors

with the effect of the microenvironment. Importantly, these

findings may contribute to the understanding of resistance

mechanisms to immunotherapy treatments and the prognosis of

those patients.
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