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SUMMARY

Immunotherapy has revolutionized cancer treat-
ment, yet most patients do not respond. Here, we
investigated mechanisms of response by profiling
the proteome of clinical samples from advanced
stage melanoma patients undergoing either tumor
infiltrating lymphocyte (TIL)-based or anti- pro-
grammed death 1 (PD1) immunotherapy. Using
high-resolution mass spectrometry, we quantified
over 10,300 proteins in total and �4,500 proteins
across most samples in each dataset. Statistical an-
alyses revealed higher oxidative phosphorylation
and lipid metabolism in responders than in non-re-
sponders in both treatments. To elucidate the effects
of the metabolic state on the immune response, we
examined melanoma cells upon metabolic perturba-
tions or CRISPR-Cas9 knockouts. These experi-
ments indicated lipid metabolism as a regulatory
mechanism that increases melanoma immunoge-
nicity by elevating antigen presentation, thereby
increasing sensitivity to T cell mediated killing both
in vitro and in vivo. Altogether, our proteomic
analyses revealed association between the mela-
noma metabolic state and the response to immuno-
therapy, which can be the basis for future improve-
ment of therapeutic response.
INTRODUCTION

Immunotherapy has revolutionized the treatment of metastatic

melanoma patients, achieving dramatic improvement of patient
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survival. So far, this success has largely been attributed to the

highmutational load ofmelanoma. Immune checkpoint inhibitors

(ICIs) are currently considered the mainstay of melanoma immu-

notherapy, particularly antibodies targeting either the cytotoxic

T-lymphocyte-associated protein 4 (CTLA-4) or the programmed

death 1 (PD1) immune checkpoints, yet approximately 50% of

the patients do not respond to treatment (Hodi et al., 2010; Rob-

ert et al., 2011; Schadendorf et al., 2015; Topalian et al., 2012).

Adoptive cell transfer (ACT) of tumor-infiltrating lymphocytes

(TILs) is a different immunotherapeutic strategy that shows

high efficacy in melanoma treatment (Dudley et al., 2005; Rosen-

berg et al., 1988). In the pre-anti-PD1 era, our team and others

have shown that TIL-based therapy overcomes the limited im-

mune activity and elicits around 50% response rates (Besser

et al., 2010; Dudley et al., 2005; Radvanyi et al., 2012; Zikich

et al., 2016).

Prognostic biomarkers for melanoma rely mostly on baseline

clinical and pathological features, such as ratios between intra-

tumoral immune cell sub-populations or plasma lactate dehy-

drogenase (LDH) levels (Weide et al., 2016). Beyond prognostic

markers, much effort has been invested into the identification of

predictive response markers and unraveling resistance mecha-

nisms, predominantly using histological and genomic ap-

proaches (Pitt et al., 2016; Wellenstein and de Visser, 2018).

Parameters such as expression of checkpoint proteins, muta-

tional load, neoepitope load, T cell receptor clonality, and im-

mune gene signatures correlate with response rate, but largely

overlap between responders and non-responders, and are

therefore of low predictive value (Gibney et al., 2016). Recent

‘‘omics’’ studies focused on finding transcriptomic signatures

of response. Cytolytic markers (Van Allen et al., 2015) and im-

mune-related gene signatures (Auslander et al., 2018; Ayers

et al., 2017; Lauss et al., 2017; Riaz et al., 2017) were associated

with response in different therapy approaches. Hugo et al. (2016)

established innate PD1 resistance signature (IPRES), which is
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comprised of mesenchymal transition-related genes, extracel-

lular matrix modulators, hypoxia regulators, and angiogenesis

factors. More recently, Cascone and colleagues found that

elevated glycolysis increases resistance to TIL-based therapy

(Cascone et al., 2018). The field of single-cell RNA-sequencing

(scRNA-seq) has lately profiled tumor sub-populations, showing

that melanoma cells display heterogeneity in their transcriptional

programs (Tirosh et al., 2016), whereas non-responder cells ex-

press a resistance program controlled by CDK4 and CDK6

(Jerby-Arnon et al., 2018). Others have studied CD8+ T cell

sub-populations and their association with response, showing

that T cells expressing transcription factor 7 (TCF-7) are corre-

lated with response (Sade-Feldman et al., 2017), whereas a sub-

set of dysfunctional CD8+ cells are regulated by intracellular met-

allothioneins (Singer et al., 2016), and display a continuous

progression from an early effector into a dysfunctional T cell

state (Li et al., 2018).

In contrast to the extensive transcriptomics research, deep

proteomic analysis of melanoma has not yet been performed.

We and others have shown that there are major differences be-

tween these two regulatory layers (Vogel et al., 2010;Wang et al.,

2017a) that can have major implications on cancer classification

and biomarker identification (Mertins et al., 2016; Yanovich et al.,

2018). In addition, the proteomic layer reflects much more accu-

rately the cellular function. We therefore chose to examine mel-

anoma immunotherapy response by using high-resolution liquid

chromatography-mass spectrometry (LC-MS/MS)-based prote-

omics, aiming to identify signatures and cellular mechanisms of

immunotherapy response. To that end, we assembled two

cohorts of patients treated with TIL or anti-PD1. Analysis of a

total of 116 patients revealed major functional differences be-

tween responders and non-responders to both treatments, spe-

cifically involving oxidative and lipid metabolism along with

antigen presentation. In vitro and in vivo functional analyses re-

vealed that lipid and ketone body metabolism proteins in the

cancer cells are major mediators of antigen presentation and tu-

mor immunogenicity.

RESULTS

Proteomic Analysis of Melanoma Response to TIL and
Anti-PD1
Aiming to identify protein networks associated with response to

immunotherapy, we assembled a cohort of 116 stage IV mela-

noma samples, including 42 patients treated with TIL and 74

patients treated with anti-PD1, and performed untargeted MS-

based proteomic analysis. We divided each cohort into two

main groups of responders (including partial and complete re-

sponders; n = 61) and non-responders (progressive disease;

n = 48). The PD1 cohort included additional patients with stable

disease (n = 7) (Figure 1A; Table S1A). Examination of the pa-

tients’ clinical parameters showed that responders and non-re-

sponders present highly significant differences in overall survival

(Figure 1B). Both the age and BRAF mutation status showed no

significant difference between the groups. Additionally, prior

treatments with targeted therapy (n = 16) or anti-CTLA-4

(n = 29) showed no association with response. In agreement

with previous reports (Conforti et al., 2018), in the TIL cohort
we found significant association with gender (Figures S1A–

S1C), and lower plasma LDH levels were found in the responders

than in non-responders of both cohorts (p value < 0.005; Chi

square test) (Figures S1A–S1C), as previously reported (Weide

et al., 2016). In accordance with (Besser et al., 2013), in the TIL

cohort the number of infused CD8 cells was found to be the

most significant predictor (p value = 3.19E�04; Student’s

t test); however, this parameter is available only after TILs have

been extracted and propagated ex vivo, which limits its use.

For proteomic analysis, we dissected melanoma regions with

> 80% tumor cells and followed with stable isotope labeling with

amino acids in cell culture (SILAC)-based high-resolution LC-

MS/MS analysis. To obtain accurate proteome quantification,

we designed a super-SILAC mix, which was composed of five

SILAC-labeled melanoma cell lines that served as a reference

for normalization (Geiger et al., 2010). Examination of the ratios

of the super-SILAC standard toward the tumor proteins showed

high concordance, reflecting its suitability as an internal stan-

dard (Figure S1D). The mix was then spiked into each of the mel-

anoma samples at a 1:1 protein ratio to serve as the reference for

quantification. The combined protein lysates were trypsin-di-

gested and fractionated, followed by high-resolution LC-MS/

MS analysis on the Q-Exactive Plus or HF mass spectrometers

(Figure 1C). Overall, 10,376 non-redundant protein groups

were quantified (with 1% false discovery rate [FDR] on the pep-

tide and protein levels) (Table S1B); there were no major

differences in the coverage between the responders and non-re-

sponders (Figures 1D–1E). All downstream statistical analyses

were performed upon further data filtration to retain only proteins

identified in at least 70% of the samples. These lists, of 4,400–

4,600 proteins (Tables S1C and S1D), included more than 800

signal-transduction-related proteins and dozens of receptors

and transcription-factor-associated proteins, indicating suffi-

cient coverage for analysis of intracellular processes (Table S1E).

Functional Analysis of Responders and Non-responders
to Immunotherapy
Initial bioinformatic analysis examined the functional differences

between respondersandnon-responders ineach therapy.Wefirst

applied a low stringency Student’s t tests with a nominal p value

cutoff (p value < 0.05) and found 414 and 636 differentially ex-

pressed proteins (DEPs) in the TIL and the anti-PD1 cohorts,

respectively (Tables S2A and S2B). We then constructed proteo-

maps to cluster the DEPs according to their Kyoto Encyclopedia

Genes and Genomes (KEGG) pathway annotations and found a

striking resemblance between the maps of the two treatments

(Figures 2A and S2A). In both, the responder group was domi-

nated by higher levels of metabolic proteins, whereas non-re-

sponders were dominated by spliceosome and RNA-meta-

bolism-related proteins. Along with the metabolic categories,

responders from both datasets had higher proportions of anti-

gen-presentation-related proteins, as well as signaling-related

categories (mitogen-activatedprotein kinase [MAPK], nuclear fac-

tor-kB [NF-kB], and RAS signaling pathways), all of which play

important roles in melanoma and in the response to immuno-

therapy (Manguso et al., 2017; Sumimoto et al., 2006). In

agreement with the high pathway resemblance between the two

therapies, a two-dimensional (2D) annotation enrichment test
Cell 179, 236–250, September 19, 2019 237
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Figure 1. Proteomics of Melanoma Response to Immunotherapy

(A) The study cohort includes 42 and 74 patients undergoing TIL-based or anti-PD1 immunotherapy, respectively. Clinical parameters are indicated in the

heatmap. See also Figures S1A–S1C and Table S1A.

(B) Kaplan-Meier plots show highly significant differences between responders and non-responders to TIL or anti-PD1 treatments in overall survival (OS). See also

Table S1A.

(C) The proteomics workflow involved protein extraction from FFPE tissues and mixing with a super-SILAC standard. The proteins were then trypsin-digested,

followed by peptide fractionation. We used liquid chromatography coupled with the Q Exactive Plus or Q Exactive HF MS followed by computational analysis in

MaxQuant and Perseus.

(D) Total number of proteins quantified in each group of samples.

(E) A Venn diagram showing the overlap of quantified proteins in each group. Abbreviations are as follows: CR, complete response; PR, partial response; PD,

progressive disease; SILAC, stable isotope labeling with amino acids in cell culture; NR, non-responders (including PD); R, responders (including CR and PR); IB,

infusion bag.
distribution displayed a high overall correlation between the en-

riched categories in both treatments (R = 0.76; p value =

1.5E�86). In both treatments, responders were significantly
238 Cell 179, 236–250, September 19, 2019
enriched for mitochondrial metabolic pathways, including the

tricarboxylic acid (TCA) cycle, fatty acid oxidation, and ketone

body metabolism (2D annotation enrichment analysis, FDR
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Figure 2. Functional Differences between Responders and Non-re-

sponders to Immunotherapy

(A) Functional categories higher in responders (left) and non-responders (right), as

illustrated by using Proteomaps (Liebermeister et al., 2014). Each polygon cor-

responds toasingleKEGGpathway,andthesizecorrelateswith the ratiobetween

the groups. Themaps show high similarity between the KEGG pathways of DEPs

upon TIL andanti-PD1 treatments. See also Figure S2A and TablesS2A andS2B.

(B) Two-dimensional annotation enrichment analysis shows similar enrich-

ments in the two immunotherapy regimens (FDR q value < 0.02). In both

treatments, responders are enriched with mitochondrial metabolism-related

pathways and antigen presentation related categories, whereas non-re-

sponders are enriched with mRNA processing pathways and cell cycle pro-

teins. See also Table S2C.

(C) WGCNA of 116 melanoma samples shows module eigengenes (MEs)

highly correlated with long PFS and CR or PR classification (upper heatmap).

Enrichment analysis for the different MEs is presented in the lower heatmap

(FDR q value < 0.05). See also Table S2D.
qvalue<0.02) (Figure2B;TableS2C). Theseprocessesconcurred

withenrichmentof antigenpresentationand type I and type II inter-

feron (IFN) signaling categories. The non-responder group was

significantly associated with cell cycle, in accordance with Lauss

et al. (2017), as well as with splicing-related categories.

Given the functional similarity of the response profiles to both

treatments, we searched for common functional determinants

associated with the patient clinical parameters. We integrated

the two cohorts to create a single dataset of all 116 samples and

performed weighted gene correlation network analysis (WGCNA).

Separation of the proteomic profiles to eigengenemodules identi-

fied a group of modules that were positively associated with pa-

tient progression-free survival, complete or partial response, and

normal plasma LDH level. In agreement with the previous results,

these modules showed enrichment of antigen presentation and

IFNG signaling along with mitochondrial metabolic pathways

(Fisher exact test, FDR q-value < 0.05) (Figure 2C; Table S2D).

WGCNA further revealed an association between BRAFmutation

and elevated levels ofmitochondrial OXPHOS proteins, but no as-

sociation with response, whereas WT BRAF was associated with

higher expression of RNA splicing and RNA processing and SD

samples, implying that there could be another level of complexity.

To examine the generality of the mitochondria-IFN associa-

tion, we compared our results to published RNA-seq datasets

that explored the response to anti-PD1- (Hugo et al., 2016),

anti-CTLA-4- (Van Allen et al., 2015), and TIL-based (Lauss

et al., 2017) treatments. Enrichment analysis showed that re-

sponders in all three datasets had moderately higher levels of

mitochondrial genes than did non-responders, including

OXPHOS TCA cycle and ketone body metabolism, along with

antigen presentation and type I and type II IFN signaling pathway

genes. Fatty acid catabolism was enriched in responders of two

of the three RNA datasets (2D annotation enrichment test, FDR q

value < 0.05) (Figure S2B; Tables S2E–S2G). Comparison to the

proteomic data shows that the metabolic enrichment was much

lower at the RNA level than at the proteome level, whereas the

antigen-presentation- and IFN-related categories were enriched

to the same extent. Altogether, these analyses highlight that dif-

ferences in mitochondrial metabolism are generally associated

with immunotherapeutic response, irrespective of the treatment

regimen, and are evident at the RNA level as well, though to a

much lower extent than at the proteome level.
Cell 179, 236–250, September 19, 2019 239
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Figure 3. Protein Signatures of Response to Immunotherapy

(A) Heatmap of the TIL signature shows eight proteins that discriminate between responders and non-responders. TUBB2B and ATRIP aremore highly expressed

in non-responders than in responders, and CROCC, HTATIP2, SUPV3L1, ACAT1, HADHA, and ACOT1 or ACOT2 are higher in responders than in non-re-

sponders. See also Figures S3A and S3B.

(B) Heatmap of anti-PD1 signature shows 15 proteins that discriminate between responders and non-responders, all of them higher in the responders. See also

Figure S3C and S3D.

(C) A volcano plot shows the results of a Student’s t test comparing responders and non-responders to anti-PD1 (FDR q value < 0.1, S0 = 0.1). Signature proteins

are in orange. Additional selected proteins are in blue. See also Table S4A.

(D) A volcano plot that shows the results of a Student’s t test between responders and non-responders in the integrated cohort of TIL- and anti-PD1-treated

samples (FDR q value < 0.1, S0 = 0.1). Blue proteins are the TIL signature and orange proteins are the anti-PD1 signature. See also Table S4B.
Identification of Protein Markers of Response to
Immunotherapy
Aiming to reduce the broad pathway view to specific pro-

teins and identify minimal protein signatures of response, we

applied support vector machine (SVM)-based classification

with ANOVA-based feature selection embedded in a recursive
240 Cell 179, 236–250, September 19, 2019
cross validation procedure (see STAR Methods). For the

TIL cohort, this procedure resulted in an eight-protein sig-

nature; six of those were higher and two were lower in the re-

sponders than in non-responders (Figure 3A). The signature

provided excellent separation between the groups according

to the first component in the principal component analysis
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(PCA) (Figure S3A), and the receiver operating characteristics

(ROCs) curve showed high sensitivity and specificity of predic-

tion with an area under the curve (AUC) of 0.85 (Figure S3B).

The same procedure applied to the anti-PD1 cohort resulted in

a 15-protein signature, all higher in the responder group than in

the non-responder group with an AUC of the ROC curve of

0.77 (Figures 3B, S3C, and S3D). Comparing the two signatures

showed that, despite the high-functional similarity between the

response profiles of both treatments, there was no overlap be-

tween them. The TIL cohort included proteins related to fatty

acid and ketone body metabolism, ACOT1/ACOT2, ACAT1,

and HADHA. The anti-PD1 signature was comprised of multiple

antigen-presentation-related proteins, including the major histo-

compatibility complex (MHC) class I molecules (human leuko-

cyte antigen [HLA]-A, HLA-C, and B2M), MHC class II chaperone

CD74, antigen peptide transporters (TAP1 and TAP2), TAPBP

(whichmediates the interactions between the HLAs and the pep-

tide transporters), and the proteasomal subunit PSME1. Of note,

when running the algorithm on the TIL dataset combined with

selected baseline clinical information, the only feature that out-

performed the proteomics classifiers was the number of CD8

cells in the infusion bag. The next ranked clinical feature, plasma

LDH level, was much inferior to the signature proteins in both the

TIL and the anti-PD1 datasets (Tables S3A and S3B).

Statistical analysis of the anti-PD1 cohort showed that 12 pro-

teins out of 15 PD1-signature proteins were also statistically sig-

nificant (Student’s t test; permutation-based FDR q value < 0.1,

S0 = 0.1) (Figure 3C; Table S4A). In total, we found 95 signifi-

cantly changing proteins in the PD1 cohort, 83 of them higher

in the responders than in non-responders, including 4MHCclass

II proteins, all 3 immunoproteasome subunits (PSMB8, PSMB9,

and PSMB10), ERAP1 (an aminopeptidase that generates most

of the HLA peptides), STAT1, as well as multiple metabolic en-

zymes. Due to the smaller size of the TIL cohort, there were no

significantly changing proteins. To increase the statistical power

of the analysis, we merged the two cohorts and followed with a

Student’s t test (permutation-based FDR q value < 0.1, S0 =

0.1) (Table S4B). We found 160 significantly changing proteins

between the responders and non-responders, including 10 of

the PD1 signature (primarily MHC-related) and 3 of the TIL signa-

ture proteins (ACAT1, ACOT1/ACOT2, and HADHA) (Figure 3D).

Construction of a protein interaction network of the responder

proteins showed two highly connected protein clusters; the first

was enriched with the IFN and antigen processing and presenta-

tion machinery proteins; the second was enriched with mito-

chondrial metabolic enzymes involved in lipid metabolism and

TCA cycle (Fisher exact test, q value < 0.02) (Figures 4A–4C
Figure 4. Integrated Analysis of Response to Immunotherapy

(A) Enrichment analysis of selected processes higher in the responders to immuno

the enrichment factor. The entire list of enriched processes is in Table S4C.

(B) Protein-protein interaction network of the significantly upregulated proteins

correlates with the ratio between responders and non-responders. Enriched KEG

(C) Schematic representation of the metabolic pathways of proteins significantly

(D) Dot plot shows the changes in the TIL signature proteins in the anti-PD1 coh

(E) Dot plot of the anti-PD1 signature proteins on the TIL cohort data.

(F) Kaplan-Meier analyses of both signatures on each proteomics cohort separa

TCGA mRNA melanoma dataset (Cancer Genome Atlas Network, 2015). Heatma

Meier directionality with respect to expression (below or above median). Abbrev
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and S4A; Table S4C). Thus, the mitochondria-IFN network is

associated with response to both treatments, despite the fact

that the proteins do not necessarily predict response in both

cases. In agreement, examination of the TIL signature on the

anti-PD1 cohort data showed that the general trend of most pro-

teins is similar between the cohorts. All six responder proteins of

the TIL signature were also upregulated in the anti-PD1 re-

sponders (Figure 4D). Similarly, examination of the anti-PD1

signature on the TIL cohort showed a similar trend for 10 of the

15 proteins. Importantly, the MHC-related proteins (HLA-A,

HLA-C, B2M, andCD74) and the antigen presentationmachinery

proteins (TAP1, TAP2, TAPBP, and PSME1) were all higher in the

TIL responders than in non-responders (Figure 4E).

Next, we validated the clinical significance of the signature

proteins and associated their expression levels with progres-

sion-free survival (PFS). Kaplan Meier analysis showed that

above-median expression levels of ACAT1, SUPV3L1, and

HTATIP2were associatedwith longer PFS in the TIL cohort (Ben-

jamini Hochberg FDR q value < 0.05) (Figure 4F). Interestingly,

there was no such association for RNA expression in The Cancer

Genome Atlas (TCGA) data for any of the TIL signature proteins.

In agreement, examination of the signature gene expression in

the immunotherapy transcriptomics datasets, most genes

showed similar trends, but muchmilder differences than the pro-

teomics data (Figures S4B and S4C). In the anti-PD1 cohort,

most of the signature proteins were significantly associated

with longer PFS, and this was also evident in the TCGA overall

survival data. Analysis of each signature protein on the other

cohort showed almost no association with survival (Figure 4F).

The association between the anti-PD1 signature and the TCGA

survival data show that antigen presentation signal is associated

with tumor aggressiveness and immune evasion, irrespective of

the patient treatment course. Discrepancies with the TIL results

might be associated with the high variability of the TCGA cohort

(e.g., prior treatments and disease stage), which could affect

cancer cell metabolism. In addition, our results show lower con-

sistency between the protein and RNA signals of these proteins,

suggesting that the TCGA gene expression data is unlikely to

reflect the protein levels, as measured in the current study.

The proteomic results correlated the melanoma metabolic

state with antigen presentation and IFN signaling. Given that

these analyses might have averaged signals from different cell

populations, we examined the spatial expression of key signa-

ture proteins on the tissue level by immunohistochemistry of

consecutive slides. We focused on the three metabolic proteins

from the TIL signature, ACAT1, ACOT1, and HADHA. In addition,

we stained for micropthalmia transcription factor (MITF) to mark
therapy from the joint TIL-PD1 dataset (FDR q value < 0.2). Radial plot indicates

in the responders to immunotherapy in the combined dataset. The node size

G pathways are colored as indicated. See also Table S4B.

higher in the responder group.

ort data.

tely, the integrated proteomics cohort of 109 samples (excluding SD), and the

p indicates the �log q value, the significance (q value < 0.05), and the Kaplan-

iations are as follows: OS, overall survival; PFS, progression free survival.
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Figure 5. Tissue-Level Validation of the Metabolic Proteins and T Cell Infiltration

(A) IHC of selectedmetabolic proteins from the TIL signature: ACAT1, ACOT1, and HADHA.MITF is used as amelanomamarker. SDHA is used as amitochondrial

marker. FABP7 is a melanoma antigen that shows an opposite trend in the TIL proteomics data. Scale bar, 100 mm.

(B) Boxplots show the quantification of the IHC results.

(C) Correlation heatmap of IHC-stained proteins. *p < 0.05; **p < 0.1.

(D) Boxplots for the quantification of CD3 and CD8 cells. See also Figure S5.
the melanoma cells, and fatty acid binding protein 7 (FABP7),

which is a known melanoma antigen (Goto et al., 2010) that

was lower in the TIL responder group than in the non-responder

group. Immunostaining showed significant differences in ex-

pression between the responders and non-responders, in agree-

ment with the proteomics data, and showed specific staining of

signature proteins in the melanoma cells rather than the stroma

(Figures 5A and 5B). Staining of the mitochondrial marker and

electron transport chain (ETC) component succinate dehydroge-

nase complex flavoprotein subunit A (SDHA) showed an overall

significant increase in mitochondria in the responders, albeit to

a lower extent than the signature proteins (Figure 5C). We then

examined the association between the metabolic protein

expression and T cell infiltration (Figures 5C, 5D, S5A, and

S5B). In agreement with the higher treatment efficacy in these

patients, we found high correlation between CD8 or CD3 T cell

staining and the signature proteins ACOT1, ACAT1, and HADHA
(Figure 5C). Lower correlation was found with SDHA, and we

found no correlation with MITF. Altogether, these results prove

that there is a clear link between tumor mitochondrial meta-

bolism and the cellular immunogenicity, which warrant down-

stream functional investigation.

Functional Validation of Metabolic Regulation of
Melanoma Cell Immunogenicity
Beyond the correlation between the metabolic profiles and the

immune response, we asked whether there is also a functional

role of mitochondrial metabolism in increasing tumor immunoge-

nicity. To induce increased mitochondrial respiration in cell

culture, we treated four melanoma cell lines with dichloroacetate

(DCA), an inhibitor of pyruvate dehydrogenase kinase, which

elevates the carbon flux into the mitochondria. Proteomic anal-

ysis of DCA-treated cells showed increased expression of multi-

ple proteins involved in antigen presentation, including the
Cell 179, 236–250, September 19, 2019 243
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Figure 6. Metabolic Control of Antigen Presentation

(A) Proteomic profiles of all ‘‘antigen processing and presentation’’ (GOBP category) proteins that were significantly different upon DCA treatment in at least one

cell line (FDR q value < 0.05, S0 = 0.1). Values are log2 LFQ intensity ratio of DCA-treated to vehicle. Color bar indicates the number of significant systems per

protein. See also Table S5.

(B and C) Flow-cytometry analysis of the change in the HLA-ABC and HLA-DR signal (B) or percentage of stained cells (C) upon treatment with 30mMDCA in four

melanoma cell lines. Values are ratio of DCA-treated to vehicle control. Data are represented as mean ± SEM. *p < 0.05; **p < 0.1.

(D) RT-qPCR analysis of the RNA expression changes of HLA-A, HLA-B, and HLA-C upon treatment with 30 mMDCA. Values are ratio of DCA-treated to vehicle

control. Data are represented as mean ± SEM. *p < 0.05; **p < 0.1.

(E) One-dimension annotation enrichment analysis shows antigen presentation or type I IFN signaling enrichment along with mitochondrial respiration enrichment

in the CRISPR control cells (FDR q value < 0.02). See also Table S6A and S6B.

(F and G) Flow-cytometry measurement of the changes in HLA-ABC and HLA-DR signal (F) or percentage of stained Mel526 cells (G). Data are represented as

mean ± SEM. *p < 0.05; **p < 0.1.

(H) Proteomic profiles of all antigen processing and presentation (GOBP category) proteins that were significantly different in at least three gene knockouts in

Mel526. (FDR q value < 0.05, S0 = 0.1). Values are log2 LFQ intensity ratio of CRISPR control to CRISPR KO.
immunoproteasome subunits PSMB8 and PSMB9 and the

aminopeptidase ERAP1 (Student’s t test permutation-based

FDR q value < 0.05, S0 = 0.1) (Figure 6A; Table S5). Among the

MHC class I proteins, HLA-A expression was slightly decreased,

whereas HLA-B and HLA-C were significantly increased in most

melanoma cell lines upon DCA treatment, and the key antigen

presentation players TAP1, TAP2, and B2M showed differential

behavior in the different cell lines. Of note, several antigen pre-
244 Cell 179, 236–250, September 19, 2019
sentation proteins were lower upon DCA treatment, mainly

vesicle-mediated transport proteins, such as kinesin superfamily

proteins (KIFs), cathepsins, and AP complex subunits; these

affect mostly MHC class II compartment transport (Neefjes

et al., 2011). In accordance with the proteomics results, we

found that treatment with DCA increased HLA presentation on

the cell surface and increased mRNA expression levels (Figures

6B–6D and S6A). We further examined whether inhibition of



mitochondrial function can elicit opposite response.We inhibited

oxidative phosphorylation with rotenone, antimycin or oligomy-

cin, inhibited beta-oxidation with etomoxir, or inhibited ACAT1

with avasimibe. OXPHOS inhibition decreased MHC class I pre-

sentation on the cell surface in three of the four cell lines. Specific

inhibition of beta-oxidation and ACAT1 had milder effects but

showed similar trends (Figures S6B–S6K). Altogether, these re-

sults suggest that the metabolic state is not only correlated

with response to treatment, but also has a regulatory role in

increasing overall antigen presentation, mainly MHC class I ma-

chinery. The use of metabolic inhibitors showed that, despite the

emphasis on beta-oxidation, MHC presentation is affected by

mitochondrial activity in general.

To directly associate between the signature proteins and anti-

gen presentation, we used CRISPR-Cas9 system to knock out

two TIL signature genes, ACAT1 and HADHA, in WM266-4 and

Mel526melanoma cell lines. In addition, we knocked out thema-

jor regulator of fatty acid oxidation CPT1A in the same cells (Fig-

ures S7A–S7B). Proteomic analysis of the CRISPR KO cells

showed significant enrichment of antigen presentation and IFN

signaling along with OXPHOS and respiratory electron transport

chain (ETC) processes in the control compared with KO cells (1D

enrichment analysis, FDRq value < 0.02) (Figure 6E; Tables S6A–

S6B). Analysis of oxygen consumption rate (OCR) showed vari-

able effects. KO of ACAT1 and CPT1A reduced maximal OCR

and the spare respiratory capacity in WM266-4, and KO of

HADHA and CPT1A slightly reduced the spare respiratory ca-

pacity in Mel526 (Figures S7C–S7H). Presumably, the differ-

ences in culture conditions in the OCR measurements, and

potentially also compensatory effects in the clones, led to

some variation in OCR changes. To further investigate mitochon-

drial function, we quantified mitochondrial mass, as measured

by MitoTracker staining. Mitochondrial staining was increased

in most KO systems in both cell lines (Figures S7I–S7J). We

speculate that this increase partially compensates for the KO

of these metabolic enzymes, leading to variable overall OCR.

Integration of these results shows that oxygen consumption

per mitochondria is reduced in most systems, and the variation

between the clones is probably related to the in vitro growth

conditions.

Investigation of the downstream effects of the genetic pertur-

bations showed reduced MHC class I intensity and reduced

percent of HLA class II presenting cells upon ACAT1, HADHA,

or CPT1A knockout, primarily in Mel526 cells (Figures 6F, 6G,

S8A, and S8B). Proteomic analysis further verified these results

(Figures S8C and S8D) and showed higher control/KO ratios in

other key antigen presentation machinery proteins, including im-

munoproteasome subunits PSMB8 and PSMB9, ERAP1, TAP1,

TAP2, TAPBP, B2M, and PD1A3 (Student’s t test, permutation-

based FDR q value < 0.05, S0 = 0.5) (Figures 6H and S8E–

S8G; Tables S6C–S6F). These results show that even a single

mitochondrial protein from our TIL signature can affect antigen

presentation machinery and MHC class I expression.

The metabolic effects on antigen presentation suggest that

these might affect T cell recognition and tumor cell killing. To

examine this hypothesis, we co-cultured the KO or control mel-

anoma cells with matching T cells and monitored cell death by

LDH secretion. In agreement with the decreased expression of
antigen presentation machinery proteins, specific T cell killing

was significantly reduced upon KO of ACAT1, HADHA, and

CPT1A (Figure 7A). To examine these effects via in vivo mouse

models, we knocked out Acat1 in YUMMER1.7 (clone D4J)

(Meeth et al., 2016; Wang et al., 2017b), a mouse melanoma

cell line (Figure S8H), and monitored the effects on tumor growth

and immune infiltration in immune-competent mice. Monitoring

the tumors over 17 days showed that Acat1 KO induces a

marked increase in tumor growth (Figure 7B). On the basis of

the reduced sensitivity to T cell killing observed in vitro, we hy-

pothesized that Acat1 KO reduces T cell recognition, and

thereby promotes tumor progression. Indeed, Acat1 KO tumor

cells showed significantly reduced expression of MHC class I

and PD1 ligand (Pdl1) at both the RNA and the protein levels (Fig-

ures 7C–7F and S8I–S8J), as well as B2m RNA levels (Fig-

ure S8K). Moreover, upon 24 h incubation with IFNG, the KO

cells displayed lower induction of MHC class I, Pdl1 and B2m

(Figure 7G). Immune cell profiling showed lower levels of cyto-

kine-producing T cells (CD8+TNFA+IFNG+ and CD4+TNFA+) in

the Acat1-KO tumors than in controls (Figures 7H and 7I),

whereas the overall percentage of infiltrating CD4+ and CD8+

T cells did not vary (Figures 7I–7L). Of note, no difference in

IFNG+ single-producing CD8+ T cells was observed, indicating

that Acat1 deficiency more prominently affected the number of

polyfunctional CD8+ T cells in melanoma. Furthermore, the

fraction of monocytic myeloid cells (CD45+CD11B+F4/80lowLY6-

Chigh) was significantly lower in the Acat1-KO tumors than in the

control (Figure 7M), while the proportion of macrophages

(CD45+CD11B+F4/80highLY6Clow) was significantly higher (Fig-

ure 7N). CD45+ CD11B+ F4/80low LY6Chigh cells were previously

associated with more inflamed tumors and improved overall sur-

vival (Perry et al., 2018). Overall these results show the impor-

tance of these proteins as regulators that affect the melanoma

and immune cells both in vitro and in vivo.

DISCUSSION

Melanoma is an extensively studied cancer predominantly from

an immunotherapeutic perspective. Transcriptomic analyses

have enabled further examination of potential biomarkers to pre-

dict response (Hugo et al., 2016; Lauss et al., 2017; Riaz et al.,

2017; Van Allen et al., 2015). We hypothesized that analysis at

the proteomic level would unravel novel aspects of response

not yet observed on the mRNA level. We present the proteomic

landscape of 116 melanoma samples of patients treated by

either TIL-based immunotherapy or PD1 blockade. Primarily,

our dataset might serve the scientific community as a resource

of clinical proteomic data, which is still sparse, especially in

melanoma.

Our major findings link melanoma metabolism to immunoge-

nicity and the response to two different modes of immuno-

therapy. Higher amounts of MHC molecules is directly

associated with response to T cell killing (Sade-Feldman et al.,

2017; Seliger, 2014); indeed, our immunohistochemistry (IHC)

analyses show a correlation between metabolic protein expres-

sion and T cell activation, hence the oxidative metabolic state

might render the tumor more ‘‘hot’’. We further observed lower

MHC amounts and subsequently reduced T cell killing upon
Cell 179, 236–250, September 19, 2019 245
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Figure 7. CRISPR KO Effects on Tumor Immunogenicity and T Cell Activity

(A) CRISPR-Cas9 knockout of ACAT1,HADHA, andCPT1A in WM266-4 (right) andMel526 (left) cells reduces specific killing by T cells. KO cells were co-cultured

with matched T cells and cell death was quantified based on LDH secretion. Data are represented as mean ± SEM. *p < 0.05; **p < 0.1.

(B–N) KO of Acat1was performed in YUMMER1.7 (clone D4J) mouse cells that were then injected into mice (control n = 8; Acat1 KO n = 10). See also Figure S8H.

Acat1 KO cells presented enhanced tumor growth compared with control. Data are represented as mean ± SEM (B).

(C–F) Control and KO cells were analyzed by flow cytometry to determineMHC class I MFI (C); percentage of tumor-cell-presenting MHC class I (D); Pdl1MFI (E);

and percentage of tumor-cell-presenting Pdl1 (F).

(G) CRISPR Control and KO cells were either treated with IFNG (10 ng) or not and examined for IFN-induced mRNA expression of the indicated genes. *p < 0.05;

**p < 0.1.

(H–N) Flow-cytometry-based profiling of immune cell population. Shown is the percentage of CD45+CD11b�CD8+TNFA+IFNG+-expressing cells (H); percentage

of CD45+CD11b�CD4+TNFA+-expressing cells (I); percentage of CD45+CD11b–CD8+TNFA�IFNG+-expressing cells (J); percentage of CD45+CD11b�CD8+-
expressing cells (K); percentage of CD45+CD11b�CD4+-expressing cells (L); percentage of CD45+CD11b+F4/80lowLY6Chigh-expressing cells (M); and per-

centage of CD45+CD11b+F4/80highLY6Clow-expressing cells (N).

All values are relative to untreated CRISPR control cells. Gene expression was normalized relative to actin. Data are represented as mean ± SEM.
ACAT1, HADHA, or CPT1A knockout. Elevation in MHC class I

molecules coincided with MHC class II elevation, in agreement

with the established role of CD4+ T cells in immunotherapy (Hun-

der et al., 2008; Johnson et al., 2016; Kreiter et al., 2015; Tran

et al., 2014). Importantly, the effect of melanoma metabolism

on antigen presentation was not limited to the expression of

MHC molecules but included multiple key members of the anti-
246 Cell 179, 236–250, September 19, 2019
gen processing and presentation machinery. Montoya and

colleague have pointed out that antigen processing and binding

to the MHC molecules are major limiting steps for antigen pre-

sentation, along with the availability and avidity of the MHCmol-

ecules (Montoya and Del Val, 1999), indicating the importance of

upregulating other keymembers in thismachinery in order for the

higher MHC amounts to affect immunogenicity.



Metabolic regulation affected both protein andmRNA levels of

MHC, which indicates there might be ametabolic-transcriptional

link. Two potential mediators of the signal are NLRC5, a well-es-

tablished transcriptional regulator of MHC class I (Jongsma

et al., 2017; Meissner et al., 2010), and STAT1 (Zhou, 2009),

which was significantly higher in our clinical data in the

responder tumors than in the non-responders, along with enrich-

ment of interferon regulatory factor 1 (IRF1) targets. STAT1 was

previously shown to regulate mitochondrial activity, (Pitroda

et al., 2009; Sisler et al., 2015), but its regulation by themitochon-

dria is still unknown. (Ahmed and Cassol, 2017; Mills et al., 2016;

York et al., 2015). Beyond these transcriptional regulators, two

additional mechanisms previously linked metabolism to MHC.

Charni et al. showed that elevated OXPHOS increases MHC

class I presentation by activating extracellular signal-regulated

kinase 5 (ERK5) (Charni et al., 2009; Charni et al., 2010).

Hypoxia-inducible factor-1a (HIF-1a), a master regulator of

glycolysis, was recently shown to downregulate MHC class I

and TAP proteins in sarcoma mouse models (Sethumadhavan

et al., 2017). Further research is needed to decipher which of

these mediates the metabolism-transcription link in our systems

and potentially identify the broader regulatory mechanism.

Beyond the melanoma-intrinsic effects on antigen presenta-

tion, altered tumor immunogenicity can also result from changes

in the metabolic interactions within the tumor microenvironment.

In recent years, there has been much focus on the association

between metabolism and immune response, primarily focusing

on T cells (Buck et al., 2017; Ho and Kaech, 2017; Lim et al.,

2017; Pearce et al., 2013) and immune checkpoints (Patsoukis

et al., 2015). Metabolic cross-talk can also involve the inhibitory

effects of extracellular lactate on CD8+ T cells (Brand et al., 2016;

Cascone et al., 2018). Cancer cells in the responder samples, in

accordance with their elevated mitochondrial activity, might

have lower lactate secretion, leading to lower inhibitory effects

on the T cells in the microenvironment. Higher mitochondrial ac-

tivity might also render cells more susceptible to granzyme-B-

mediatedmitochondrial apoptosis induced by T cells, and higher

ATP production by OXPHOS might serve the large energetic de-

mand of the entire process of antigen presentation. In addition to

these potential mechanisms, recent studies showed that highly

glycolytic tumors restrict glucose and phosphoenolpyruvate

(PEP) in the tumor microenvironment, thereby inhibiting T cells

by disrupting Ca2+-NFAT signaling (Ho et al., 2015), and reducing

their glycolytic capacity and IFNG production (Chang et al.,

2015), leading to resistance to immunotherapy (Cascone et al.,

2018). In our data, the responder tumors are enriched with

glycolysis or gluconeogenesis related proteins; however, the

enrichment of multiple mitochondrial pathways involving fatty

acid oxidation, ketone body metabolism, TCA cycle, and

OXPHOS, as well as their interconnectivity, suggest that glycol-

ysis is part of a larger metabolic flux toward oxidative respiration,

thus relying less on glucose. Accordingly, we speculate that the

higher tumor mitochondrial activity might consume less glucose

compared with non-responders, thereby reducing the competi-

tion with the cytotoxic T lymphocytes (CTLs). Of note, recent re-

ports indicate that the same type of immune cells can act differ-

ently upon changes in the microenvironment. Specifically,

although effector T cells are by and large glycolytic, under hyp-
oxic or hypoglycemic tumor conditions T cells that rely on fatty

acid oxidation aremore cytotoxic than those that do not (Scharp-

ing et al., 2016; Zhang et al., 2017). Moreover, different immune

cells are affected differently upon metabolic changes in the tu-

mor microenvironment. For instance, although lipid uptake by

dendritic cells renders them less functional (Herber et al.,

2010), tissue-resident memory T cells require lipid uptake for

longer survival (Pan et al., 2017). Our in vivo results already

show that themetabolic change in themelanoma affectsmultiple

cell types or states, and further functional research will uncover

the intricate relationships between the distinct cell populations

upon high mitochondrial activity.

Altogether, we propose that the metabolic state of melanoma

cells dictates cellular changes that affects vulnerability to T cell

killing through both intrinsic changes in the antigen presentation

machinery and extrinsic alterations of the tumor microenviron-

ment. These results add an additional layer to the complex

immune-metabolic network, which might have important thera-

peutic implications.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-human HLA-DR (clone G46-6) (APC conjugate) BD Biosciences Cat#560896; RRID: AB_10563218

Mouse IgG2a k isotype control (APC conjugate) BD Biosciences Cat#551414; RRID: AB_10052279

Mouse anti-humanHLA-ABC (cloneG46-2.6) (FITC conjugate) BD Biosciences Cat#555552; RRID: AB_395935

Mouse IgG1K isotype control (FITC conjugate) BD Biosciences Cat#556649; RRID: AB_396513

ACAT1 IHC antibody Atlas Antibodies Cat#HPA007569; RRID: AB_1844482

ACOT1 IHC antibody Atlas Antibodies Cat#HPA043705; RRID: AB_2678626

HADHA IHC antibody GeneTex Cat#GTX113727; RRID: AB_2037134

SDHA IHC antibody Cell Signaling Technology Cat#11998; RRID: AB_2750900

FABP7 IHC antibody Atlas Antibodies Cat#HPA028825; RRID: AB_10602130

MITF IHC antibody Cell Marque Cat#284M-96; RRID: AB_1516912

CD8 IHC antibody Biocare Medical Cat#CRM311; RRID: AB_2750579

CD3 IHC antibody Dako Cat#A0452; RRID: AB_2335677

H2-kb/H2kd antibody Biolegend Cat#114612; RRID: AB_492931

PDL1 antibody Biolegend Cat#124314; RRID: AB_10643573

CD4 antibody BD Biosciences Cat#564298; RRID: AB_2738734

CD8 antibody BD Biosciences Cat#563786; RRID: AB_2732919

CD45 antibody Biolegend Cat#103147; RRID: AB_2564383

CD11B antibody Biolegend Cat#101226; RRID: AB_830642

F4/80 antibody Biolegend Cat#123110; RRID: AB_893486

Ly6C antibody Biolegend Cat#128032; RRID: AB_2562178

TNFA antibody Biolegend Cat#506306; RRID: AB_315427

IFNG antibody Biolegend Cat#505826; RRID: AB_2295770

Biological Samples

Archival formalin-fixed paraffin-embedded (FFPE)

melanoma samples

Sheba Medical Center N/A

Chemicals, Peptides, and Recombinant Proteins

Dichloroacetate Sigma-Aldrich Cat#347795

Oligomycin Sigma-Aldrich Cat#04876

Antimycin A Sigma-Aldrich Cat#A8674

Rotenone Sigma-Aldrich Cat#R8875

Avasimibe APEXBIO Cat#A4318

Etomoxir Sigma-Aldrich Cat#E1905

Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone

(FCCP)

Sigma-Aldrich Cat#C2920

Poly-D-Lysine Sigma-Aldrich Cat#P1149

Lys-C Mass Spec Grade Wako Laboratory Chemicals Cat#125-05061

Sequencing Grade Modified Trypsin Promega Cat#V5113

LysC Trypsin mix Promega Cat#V5071

Arg10- 13C6
15N4 Cambridge Isotopes Laboratories Cat#CNLM-539

Lys8- 13C6
15N2 Cambridge Isotopes Laboratories Cat#CNLM-291

SILAC DMEM Biological Industries Cat#06-1055-70-1

SILAC RPMI Biological Industries Cat#06-1100-28-1

Seahorse XF DMEM Agilent Cat#103575
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Bradford reagent Biorad Cat#500-0006

Bond Dewax Solution Leica Biosystems Cat#LE-AR9222

Bond TM Epitope Retrieval 1 Leica Biosystems Cat#LE-AR9961

BondTM Wash Solution 10X Leica Biosystems Cat#LE-AR9590

BioTri RNA Reagent Bio-Lab Ltd, Israel Cat#009010233100

PerfeCTa FastMix II, ROX Quantabioscience, USA Cat#84210

Collagenase IV Sigma-Aldrich Cat#C5138

DNase I Recombinant Sigma-Aldrich Cat#04716728001

PMA Sigma-Aldrich Cat#P8139

Ionomycin STEMCELL Technologies Cat#73724

Brefeldin A BD Biosciences Cat#555029

Critical Commercial Assays

Pierce BCA Protein Assay Kit Thermo Scientific Cat#23225

QScript cDNA Synthesis Kit Quantabioscience, USA Cat#95047

MitoTracker� Deep Red FM Thermo Scientific Cat#M22426

CytoTox-ONE Homogeneous Membrane Integrity Assay Promega, USA Cat#G7891

LIVE/DEAD� Fixable Red Dead Cell Stain Kit ThermoFisher Cat#L23102

Bond Polymer Refine Red Detection Novocastra kit Leica Biosystems Cat#DS9390

Seahorse XFe96 FluxPak Kit Agilent Cat#102416-100

Deposited Data

Sample proteomics analysis PRIDE repository Project accession: PXD006003

Experimental Models: Cell Lines

Human: WM266-4 cell line ATCC Cat#CRL-1676

Human: WM115 cell line ATCC Cat#CRL-1675

Human: A375 cell line ATCC Cat#CRL-1619

Human: mel526 cell line Steven A. Rosenberg’s laboratory N/A

Human: mel624 cell line Steven A. Rosenberg’s laboratory N/A

Human: mel04 cell line Ella Institute Labs N/A

Human: Mel76 cell line Ella Institute Labs N/A

Human: TIL14 Ella Institute Labs N/A

Mouse: YUMMER1.7 (clone D4J) Yale University School of Medicine N/A

Experimental Models: Organisms/Strains

C57BL/6 mouse Jackson Laboratories Stock#000664

Oligonucleotides

See Table S6G for gRNA oligonucleotides IDT N/A

See Table S6H for probes and primers for human HLA

and control qPCR

Biosearch Technologies, USA N/A

See Table S6I for mouse qPCR primers IDT N/A

Software and Algorithms

MaxQuant Cox and Mann, 2008 https://maxquant.org

Andromeda search engine Cox et al., 2011 N/A

Perseus Tyanova et al., 2016 https://maxquant.org/perseus

MATLAB MathWorks https://www.mathworks.com/

products/matlab.html

R Statistical Computing Software The R Foundation https://www.r-project.org/

Other

30 kDa Amicon filters Millipore Cat#UFC803024

96-well glass bottom plates Cellvis, CA, US Cat#P96-1.5H-N

(Continued on next page)
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Empore Octadecyl C18 47mm Extraction disks Sigma-Aldrich Cat#66883-U

Empore Cation 47 mm Extraction Disks Sigma-Aldrich Cat#66889-U

Empore Anion SR 47 mm extraction disks Sigma-Aldrich Cat#66888-U

50 cm EASY-spray PepMap column Thermo Scientific Cat#ES803
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tamar

Geiger (geiger@tauex.tau.ac.il).

Plasmids generated for the study are available from the Lead Contact.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tumor sample collection
Archival formalin-fixed paraffin-embedded (FFPE) tissues from 42 metastatic melanoma patients treated with TIL-based adoptive

cell transfer were included in this study, 40 which were treated with the ‘‘Young TIL’’ protocol and 2 which were treated with the

‘‘Selected TIL’’ protocol (Besser et al., 2013; Besser et al., 2010). Patients were categorized into 21 responders (complete or partial

regression) and 21 non-responders (progressive disease), as evaluated by standard Response Evaluation Criteria In Solid Tumors

(RECIST v1.0) guidelines. All patients provided their informed consent according to the Israel Ministry of Health Approval no.

3518/2004. FFPE tissue samples from 74 metastatic melanoma patients treated with anti-PD1 immunotherapy were included in

the anti-PD1 cohort. The patients were categorized into 40 responders, 27 non-responders and 7 stable disease patients according

to multidisciplinary radiologic evaluations. Samples were taken shortly before the initiation of the indicated treatment (except for 2

samples taken 11 or 18 days after starting treatment). Clinical information of each patient is included in Table S1.

Cell lines
For super-SILACmix, the following cell lines were cultured in SILAC-mediumdevoid of lysine and arginine and supplementedwith the

heavy version of these amino acids. WM266-4, WM115, and A375 were cultured in SILAC-DMEM (Biological Industries) supple-

mented with 10% dialyzed FBS (Biological Industries), 1 mM sodium pyruvate, 4 mM L-Glutamine, 1% essential amino acids, and

antibiotics. Mel526 and Mel624 were cultured in SILAC-RPMI medium (Biological Industries) supplemented with 10% dialyzed

FBS (Biological Industries), 1 mM sodium pyruvate, 2 mM L-Glutamine, 25 mmol/l HEPES pH 7.2, and antibiotics. Lys8 concentra-

tions were 73 mg/mL, and Arg10 concentrations were 33.6 mg/mL (for WM266, A375, mel526 and mel624) or 28 mg/mL (for WM115).

After 10 doublings, successful incorporation of the labeled amino acids was determined by MS analysis. Cell line authentication for

WM266-4, WM115, and A375 was performed at the Genomics Core Facility of BioRap Technologies and the Rappaport Research

Institute in Technion, Israel. Short tandem repeat (STR) profiles were determined using the Promega PowerPlex 16 HS kit.

For cell line metabolic and genetic perturbation experiments, WM266-4 cells were cultured in DMEM supplemented with 4 mM

L-Glutamine, antibiotics, and 10% FBS. Mel526 cells were cultured in DMEM or RPMI supplemented with 4 mM L-Glutamine, anti-

biotics, and 10% FBS. Mel76 and Mel04 cells were cultured in RPMI supplemented with 4 mM L-Glutamine, antibiotics, and 10%

FBS. YUMMER1.7 (clone D4J) cells were cultured in DMEM F12 supplemented with 4 mM L-Glutamine, antibiotics, 10% FBS,

and non-essential amino acids. Cells were treated with the following inhibitors: 30 mM Sodium dichloroacetate (DCA; and PBS as

control), 3 mM avasimibe, 100 mM etomoxir, 200 nM rotenone, 250 nM antimycin or 50 nM oligomycin. DMSO treatment was used

as vehicle control for all mitochondrial inhibitors. Cells were cultured with each inhibitor / vehicle for 72 h prior to cell lysis or flow

cytometry.

Mel76, Mel04 and TIL14were obtained from surgically excisedmelanoma specimens (IRB approval no.3518/2004). For the co-cul-

ture assay, TIL14 cells were cultured in special TIL medium supplemented as previously described (Besser et al., 2013).

YUMMER1.7 (clone D4J) was generated from YUMM1.7 cells by UV irradiation and single cell clonal selection. Themethod of gen-

eration of the line was previously described (Meeth et al., 2016; Wang et al., 2017b). It was verified as diploid and evaluated for tumor

formation in C57BL/6J mice and for response to anti-PD-1 and anti-CTLA-4.

METHOD DETAILS

Proteomics sample preparation
For clinical sample preparation, slides (6-10 mm thick) from FFPE blocks were macro-dissected, deparaffinized with xylene and

washed with ethanol. The sample preparation of the TIL cohort was as follows: The extracted tissues were lysed with 4% sodium
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dodecyl sulfate (SDS), 0.1MTris pH 7.6, and then boiled for 10min at 95�C, sonicated and centrifuged at 17,000 x g. For super-SILAC

standard preparation, the heavy labeled cells were lysed with the same buffer and boiled for 10 min at 95�C. Following protein deter-

mination using the BCA protocol (Pierce), the heavy labeled super-SILAC standard lysate and the tumor lysates were mixed at a 1:1

ratio and the total protein lysate was trypsin-digested on 30 kDa filters (Millipore) using the filter-aided sample preparation (FASP)

protocol (Wi�sniewski et al., 2009). Proteins were denatured on filters in 8 M urea, reduced using 100 mM DTT, and alkylated using

50 mM iodoacetamide, followed by overnight digestion with sequencing grade trypsin (Promega; 1:50 enzyme to protein ratio).

Peptides were then acidified with 1% trifluoroacetic acid, separated into six fractions using strong anion exchange (SAX) chroma-

tography in a stage tip format and then purified on C-18 (3M) stage tips (Rappsilber et al., 2003). The sample preparation of the

anti-PD1 cohort was as follows: The extracted tissues were lysed with 50% 2-2-2 trifluoroethanol (TFE), 25mM ABC. Samples

were boiled for 1 h at 99�C, sonicated and centrifuged at 20,000 x g. Following protein determination using the Bradford protocol,

the heavy labeled super-SILAC standard lysate (in the same buffer) and the tumor lysates were mixed at a 1:1 ratio and the total pro-

tein lysate was trypsin-digested using in-solution digestion protocol. Proteins were reduced using 5 mM DTT, alkylated with 15 mM

iodoacetamide, dilutedwith 50mMammoniumbicarbonate followed by overnight digestionwith Lys-C-Trypsinmix (1:100 enzyme to

protein ratio) and trypsin (Promega; 1:50 enzyme to protein ratio). Peptides were then acidified with 1% trifluoroacetic acid, sepa-

rated into five fractions using strong cation exchange (SCX) chromatography in a stage tip format and then purified on C-18 (3M)

stage tips.

For cell line experiments, cells were lysed upon reaching�70%–90%confluence using 6M urea and 2M thiourea in 50mMammo-

nium bicarbonate in at least 3 biological replicates. Protein concentrations were determined using the Bradford assay and the pro-

teins were digested in-solution. Specifically, lysates were reduced with 1 mM DTT, alkylated with 5 mM iodoacetamide, diluted 1:4

with 50mMammoniumbicarbonate, and digested over-night with Lys-C-Trypsinmix (1:100 enzyme to protein ratio) and trypsin (1:50

enzyme to protein ratio). Next, peptides were acidified with TFA and purified on C-18 stage tips (3M).

LC-MS-based proteomics
LC-MS/MS runswere performed on the EASY-nLC1000UHPLC (Thermo Scientific) coupled to the Q-Exactive Plus or Q-Exactive HF

mass spectrometers (Thermo Scientific) (Scheltema et al., 2014). Peptides were separated with a 50 cm EASY-spray PepMap col-

umn (Thermo Scientific) using a water-acetonitrile gradient of 220min or 140min for the TIL and the anti-PD1 tumor sample fractions,

respectively, with a flow rate of 300 nL/min at 40�C. The gradient for the cell line single shots was 240 min long. Buffer A was 0.1%

formic acid, and buffer B was 80% acetonitrile, 0.1% formic acid. For the different SAX fractions of the TIL tumor samples, the

gradient was modified according to the pH of the fraction: 5%–25% buffer B (pH 11), 7%–27% buffer B (pH 8, 6 and 5), and

7%–33% buffer B (pH 3 and 4). For the different fractions of the anti-PD1 tumor samples the gradient was modified as follows:

5%–25% for fraction 1-2; 7%–28% for fraction 3-4; 7%–33% for fraction 5. For the cell line single shots, the gradient was

5%–28% or 7%–28% buffer B. The resolutions of the MS and MS/MS spectra were 70,000 and 17,500 for Q-Exactive Plus, respec-

tively. The resolutions of theMS andMS/MS spectra were 60,000 and 30,000 for Q-Exactive HF, respectively. Them/z range was set

to 300-1700 or 380-1800 Th. MS data were acquired in a data-dependent mode, with target values of 3E+06 and 1E+05 or 5E+04 for

MS and MS/MS scans, respectively, and a top-10 method.

Immunohistochemistry (IHC) staining
FFPE tumor blocks were obtained from the Institute of Pathology at the ShebaMedical Center. For ACAT1, ACOT1, HADHA, FABP7,

MITF and SDHA staining, 3.5 mm consecutive sections were mounted on the positively charged glass slides and dried overnight at

37�C. For each protein, 4-5 tumor blocks from the TIL cohort were stained per group (responder / non-responder), except for SDHA

(10 slides per group). After deparaffinization and rehydration, staining was performed using BOND-RX automated staining platform

(Leica Biosystems), following selected protocol for the BondPolymer Refine RedDetection Novocastra kit (Leica Biosystems). The kit

was selected to ensure proper contrast with endogenous pigmentation. For CD3 and CD8 staining, tissue sections (4 mm) were

processed by a fully automated protocol on a Benchmark XT staining module (Ventana Medical Systems Inc., USA). Briefly, after

sections were deparaffinized and rehydrated, a CC1 Standard Benchmark XT pretreatment for antigen retrieval (Ventana Medical

Systems Inc., USA) was selected for CD3 and CD8. For each protein, 5-6 tissue blocks were stained per group (responder / non-

responder). Slides were scanned using the Leica Aperio VERSA Digital Pathology Scanner (Aperio Technologies Inc.). Staining quan-

tification was performed using the Aperio eSlide Manager software via the Aperio Cytoplasmic Algorithm (ACAT1, ACOT1, HADHA,

FABP7, MITF and SDHA) or the Aperio Membrane Algorithm (CD3 and CD8 staining). Areas enriched by cancer cells (as defined by a

pathologist) weremanually annotated and subsequently analyzed by optimized cytoplasm algorithm (Leica Biosystems). Percentage

of positively stained cells were used for downstream statistical analysis (Ardiani et al., 2014). The correlation between the different

staining was calculated patient-wise using corrplot R code (Pearson correlation analysis).

CRISPR-Cas9 gene knockout
All guide-RNA sequences were selected from the Genescript website and were previously verified (Sanjana et al., 2014). In total 5-6

guide RNAswere examined for each gene, and only those that induced knock out or knock down (as indicated by proteomic analysis)

were used. For the human gene knock outs, the gRNAs were cloned into PX459 vector (Addgene plasmid # 62988) (Ran et al.,

2013), which contains the Cas9 enzyme from S. pyogenes upstream of the human U6 promoter, a puromycin resistance gene for
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mammalian selection and ampicillin resistance gene for bacterial selection. The cloned vectors were sequence verified and trans-

fected into WM266-4 or Mel526 cells at 80%–90% confluence followed by puromycin selection for 2 to 4 weeks. For the murine

gene knockout the gRNAs were cloned into PX458-GFP vector, which contains the Cas9 enzyme, U6 promoter, GFP tag and ampi-

cillin resistance gene for bacterial selection. All 6 gRNAs were transfected together into YUMMER1.7 (clone D4J) cells, following se-

lection by flow cytometry. All gene knockouts were confirmed usingmass spectrometry analysis. Empty vector without gRNA served

at the control.

For Mel526 cells: ACAT1 KO-1 was derived from ACAT1 gRNA sequence #3; ACAT1 KO-2 was derived from ACAT1 gRNA se-

quences #1-6; CPT1A KO-1 was derived from CPT1A gRNA sequences #1-6; CPT1A KO-2 was derived from CPT1A gRNA

sequence #5; CPT1A KO-3 was derived from CPT1A gRNA sequence #6; HADHA KO-1 was derived from HADHA gRNA

sequence #1; HADHA KO-2 was derived from HADHA gRNA sequence #2. For WM266-4 cells: ACAT1 KO-1 was derived from

ACAT1 gRNA sequence #1; ACAT1 KO-2 was derived from ACAT1 gRNA sequence #6; CPT1A KO-1 was derived from CPT1A

gRNA sequence #1; CPT1A KO-2 was derived from CPT1A gRNA sequence #6; CPT1A KO-3 was derived from CPT1A gRNA

sequence #4; HADHA KO-1 was derived from HADHA gRNA sequence #1; HADHA KO-2 was derived from HADHA gRNA

sequence #2. For YUMMER 1.7 cells: Acat1 KO was derived from all six Acat1 gRNA sequences.

T cell killing assay
T cell killing was assayed using LDH cytotoxicity. Briefly, 1 3 104 target cells were co-incubated with effector cells (TIL14) at

Effector:Target ratios of 10:1 for 18 h. Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release with the

CytoTox-ONE Homogeneous Membrane Integrity Assay (Promega, USA) according to manufacturer’s instructions. Percent of spe-

cific killing of target cells was calculated using the equation: (experimental-effector spontaneous release-target spontaneous release)

x100 / (target maximum release -target spontaneous release).

Tumor growth assessment and tumor digestion
For tumor growth analysis, 1 3 105 Acat1-KO and control YUMMER1.7 (D4J) cell lines were suspended in 100 mL of PBS and then

injected subcutaneously into C57BL/6 mice (Jackson Laboratory). All mouse experiments were performed according to approved

procedures of the Salk institute of Biological Studies Institutional Animal Care and Use Committee. At indicated time points,

Acat1-KO and control tumorswere collected andminced in HBSS containing collagenase IV (sigma) andDNase (sigma) and digested

at 37�C for 30 min. The digested tissues were then filtered, and single cell suspensions were incubated with ACK lysis buffer (Invi-

trogen) for 2 min to lyse red blood cells. The cells were then re-suspended in complete RPMI for subsequent analyses.

Flow cytometry analysis
For the human cell lines, FACS analysis was performed as follows: Cells were scraped upon reaching up to 90% confluence. Cell

pellets were then washed and incubated with HLA antibodies at a 1:10 ratio in FACS buffer containing 1% FBS, 0.1% sodium azide

in PBS. Measurements were performed using the Gallios flow cytometer (Beckman Coulter). Three biological replicates were

analyzed, each with technical triplicates.

For the YUMMER 1.7 D4J cell line analysis the protocol was performed as follows: Acat1-KO and control D4J cells were grown to

70% confluence and scraped using ice-cold PBS. Cell pellets were stained with Live/Dead fixable Red (Invitrogen) followed by sur-

face staining with H2-kb/H2-kd and Pdl1 in FACS buffer (PBS containing 1% FBS, 0.1% sodium azide). For digested tumor samples,

single cell suspensions were stained with Live/Dead fixable Red (Thermo Fisher Scientific) in PBS followed by surface staining with

antibodies in FACS buffer. For intracellular staining, single cell suspensions were stimulated with PMA (50ng)/Ionomycin (500ng) in

the presence of Brefeldin A (BD Biosciences) for 4 h. After fixation and permeabilization, followingmanufacturer’s recommendations,

cells were stained for intracellular cytokines. All samples were acquired on a BD LSRII flow cytometer and analyzed with FlowJo

software.

RNA expression analysis of MHC class I
For the human cell lines: total RNA was isolated using Tri RNA reagent (Bio-Lab, Israel) according to the manufacturer’s instructions.

RNA concentration and purity were determined by spectrophotometry and RNA Integrity by electrophoresis. For gene expression

analysis 1 mg of total RNA was reverse transcribed using QScript cDNA Synthesis Kit (Quantabioscience, USA) according manufac-

turer’s instructions. The cDNA pools were generated with a QScript cDNA Synthesis Kit (Quantabioscience, USA) according

manufacturer’s instructions. HLA-A, HLA-B and HLA-C gene expression wasmeasured by real-time PCR using a taqman assay (Bio-

search Technologies, USA). All reactions were carried out using the StepOnePlus Real-Time PCR System (Thermo Fisher, USA). The

real-time PCR reactions were run in triplicates and normalized to TFRC expression as endogenous control. Relative expression was

determined using the 2�DDCt method.

For the YUMMER 1.7 D4J cell line: 3X105 cells were treated with 10 ng/mL IFNg for 24 h, followed by RNA preparation using

RNeasy Plus Mini Kit (QIAGEN). 1mg of total RNA was reverse transcribed using the High Capacity cDNA Reverse Transcription

Kit (Thermo Fisher Scientific). 5 ng of cDNAwas used to perform qPCR using Fast SYBRGreenMaster Mix (Thermo Fisher Scientific)

and indicated primer on CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Four technical replicates were performed for

each biological sample, and expression values of each replicate were normalized against b-Actin cDNA using the 2�DDCt method.
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MitoTracker staining and imaging
Mel526 and WM266-4 cell lines were seeded in 96-well glass bottom plates (P96-1.5H-N, Cellvis, CA, USA). A labeling solution of

MitoTracker� Deep Red FM (M22426, Thermo Fisher Scientific) was prepared from a 1 mM stock (in DMSO), which was diluted

in growth medium to a final concentration of 100 nM. Live cells were stained for 30 min at 37�C, followed by a 5 min wash in

PBS. Cells were fixed with 4% paraformaldehyde solution for 15 min at room temperature and washed again for 5 min in PBS. Cells

were then stainedwith DAPI (0.5 mg/mL) for 10min at room temperature andwashed again. Imagingwas performed immediately after

staining using SP8 inverted confocal microscopy (LeicaMicrosystems,Wetzlar, Germany) equippedwith a Leica HCPL APOCS2c3

c63/1.4 NA objective. Excitation and emission ranges: DAPI 405 (415–455), MitoTracker 633 (647–665). 3D reconstructions and de-

convolution were performed in LAS-AF software.

Seahorse measurements
WM266-4 or Mel526 CRISPR cells were seeded in a poly-D-lysine-coated XF96 microplate at a density of 20,000 cells per well and

incubated at 37�C for 24 h. Basal oxygen consumption rate (OCR), maximal OCR and spare respiratory capacity were measured in

the XFe96 Extracellular Flux Analyzer (Seahorse Bioscience, Agilent) usingMito stress assay. For data normalization, cells were fixed

and stained using methylene-blue after each experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomics raw MS data processing
RawMSdata were processed usingMaxQuant version 1.5.2.10 for the TIL dataset and 1.5.6.9 for the anti-PD1 dataset and all the cell

line perturbations (Cox andMann, 2008). Database search was performed with the Andromeda search engine (Cox et al., 2011) using

the human Uniprot database. Forward/decoy approachwas used to determine the false discovery rate (FDR) and filter the data with a

threshold of 1% FDR for both the peptide and the protein levels. The settings included carbamidomethyl cysteine as a fixed modi-

fication and methionine oxidation and N-terminal acetylation as variable modifications. The ‘‘match between runs’’ option was

enabled to transfer identification between separate LC-MS/MS runs based on their accurate mass and retention time after retention

time alignment. The settings for the SILAC-labeled tumor sample runs included Lys-8 and Arg-10 as heavy labels and the re-quantify

option was enabled.

Proteomics statistical analysis
All statistical tests and calculations were performed using Perseus (Tyanova et al., 2016), MATLAB, R or Prism. For all proteomic an-

alyses, the proteinGroups output table was used. Reverse proteins, proteins that were only identified by site, and potential contam-

inants (excluding keratins) were filtered out. For the clinical tumor data, normalized ratio tumor/SILAC data were log2-transformed

and the protein groups were filtered to have at least 70% valid values, reaching a list of 4588,4620 or 4416 protein groups for the

TIL, the anti-PD1 or the combined datasets respectively, which were further used for all downstream analyses. Dataset integration

was based on gene name; multiple entries for the same gene name were integrated to a single entry by calculating the median

expression value. Data were normalized by subtracting most frequent value in each sample. To extract DEPs between responders

and non-responders multiple comparisons were performed; a two-sample Student’s t test was performed with a p value threshold of

0.05 for each of the two datasets, following by 2D annotation enrichment test (Cox and Mann, 2012) with FDR q-value 0.02 to derive

the differential functional groups in each of the two datasets. A two-sample Student’s t test with a permutation-based FDR q-value of

0.1 and S0 (Tusher et al., 2001) of 0.1 was performed for the anti-PD1 dataset or the combined dataset of both treatments, to extract

significantly changing proteins. Enrichment analyses were performed with Fisher’s exact test with a FDR q-value < 0.02. Weighted

gene co-expression network analysis (WGCNA) was performed on the entire 116 sample dataset using R code implemented in

Perseus software using signed network, cor correlation function and power = 10 (Rudolph and Cox, 2019). The Kaplan-Meier survival

analyses were performed in MATLAB using log-rank test. Proteomaps were constructed using a web tool based on the t test differ-

ence values without log2 transformation (Liebermeister et al., 2014). Protein network was based on a STRING output (Szklarczyk

et al., 2017) and was visualized in Cytoscape (Shannon et al., 2003). Principal component analysis was performed after data impu-

tation by replacing missing values with random values that create a normal distribution with a downshift of 1.8 or 1.6 standard de-

viations and a width of 0.3 or 0.4 of the original ratio distribution for the TIL and the anti-PD1 datasets, respectively. The imputed data

were also used for support vector machine (SVM) analyses in Perseus, to find a minimal signature that segregated between re-

sponders and non-responders in each dataset. For classification, we used radial basis function (RBF) kernel and feature ranking

was performed with ANOVA with S0 of 0.01 or 0.05 for the TIL or anti-PD1 datasets, respectively. Cross-validation was performed

by random sampling of 85% of the samples as a training set and testing the classifier on the remaining 15%; this process was

repeated 250 times. After protein ranking, the signature was selected based on accuracy (determined according to the area under

the ROC curve) of the top-ranked proteins. Accordingly, the top 8-ranked and 15-ranked proteins were selected as the final signa-

tures for the TIL and the anti-PD1 datasets, respectively.

For the cell line metabolic perturbations, label-free quantification normalization data were used after log2 transformation. To find

DEPs between DCA-treated and control cells, for each comparison the data were filtered to retain only proteins with valid values in at

least 70% of the samples. Following that, two sample Student’s t test was performed with a permutation-based FDR q-value
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threshold of 0.05 and S0 of 0.1. Integration of multiple t tests was based on gene name; multiple entries for the same gene namewere

integrated into a single entry by calculating the median expression value. In the CRISPR analysis, for each comparison the data were

filtered to retain only proteins with valid values in at least 70%of the samples. Following that, missing data were replaced using impu-

tation based on the assumption of normal distribution with a downshift of 1.6 standard deviations and a width of 0.4 of the original

ratio distribution. To find DEPs between CRISPR control and CRISPR KO cells two-sample Student’s t test was performed with FDR

q-value threshold of 0.05 and S0 of 0.1. The following 1D annotation enrichment test was performed on the fold change with Benja-

mini-Hochberg FDR q value < 0.02. Data integration frommultiple t tests was based on gene name;multiple entries for the same gene

name were integrated into a single entry by calculating the median expression value.

RNA -sequencing data analysis
Published RNA-sequencing data of anti-CTLA-4 treated patients (Van Allen et al., 2015) was kindly provided by Prof. Schadendorf

and Dr. Eliezer M. Van Allen. Published RNA-seq data of anti-PD1 treated patients (Hugo et al., 2016) was downloaded from the GEO

database (GEO: GSE78220.) Published RNA-seq data of the TIL dataset (Lauss et al., 2017) was downloaded from theGEOdatabase

(GEO; GSE100797). All mRNA data were analyzed using log2 data after filtering for at least 70% valid values. The following gene an-

notations were added: GOBP, GOMF, GOCC and KEGG. The 2D annotation enrichment test was calculated on the fold change be-

tween responders and non-responders in each RNA dataset or proteomics dataset (Benjamini-Hochberg FDR q-value < 0.05; one

test per RNA dataset).

DATA AND CODE AVAILABILITY

Data resources
The accession number for the MS proteomics data reported in this paper is PRIDE repository: PXD006003.
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Figure S1. Association between Clinical Parameters and Response to Treatments, Related to Figure 1.

The following clinical parameters were examined for the TIL (A), anti-PD1 (B) or combined TIL and anti-PD1 (C) datasets: Gender; lactate dehydrogenase (LDH)

levels in the blood; BRAF mutational status; age and number of CD8 T cells in the infusion bag (for the TIL patients). *p < 0.05; **p < 0.1.

(D) Histogram shows overall narrow distribution of ratios toward the super-SILAC standard.
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Figure S2. Functional Differences Associated with Response to Immunotherapy, Related to Figure 2.

(A) Functional groups higher in responders (left) and non-responders (right), as illustrated using Proteomaps. Each small polygon corresponds to a single protein

that passed the t test, and the size correlates with the ratio between responders and non-responders.

(B) Three 2D annotation enrichment tests (one for each published transcriptomics dataset) compared to the combined proteomics data (FDR q value < 0.05). All of

the categories highlighted in the plot are significantly enriched or de-enriched in each dataset. The score indicates enrichment in responders (positive) or non-

responders (negative). The proteomic scores of the same category slightly differ as a function of the RNA dataset that it is compared to.
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Figure S3. The TIL and Anti-PD1 Signature Proteins Discriminate between Responders and Non-responders, Related to Figure 3.

(A) Principal Component Analysis (PCA) shows good separation between responders and non-responders based on the TIL signature.

(B) Receiver Operating Characteristics (ROC) curve shows high sensitivity and specificity of the TIL signature, with an AUC of 0.85.

(C) PCA shows good separation between responders and non-responders, based on the anti-PD1 signature.

(D) ROC curve shows high sensitivity and specificity of the anti-PD1 signature, with and AUC of 0.77.
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Figure S4. Statistical Analysis of the Integrated PD1 and TIL Cohort and Comparison to RNA Datasets, Related to Figure 4.

(A) Selected examples of metabolic proteins significantly higher in the responder group (combined dataset).

(B and C) Ratio responder/non-responder values of the TIL (B) and anti-PD1 (C) signatures in each of the three examined RNA datasets and the current proteomic

dataset.
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Figure S5. Tissue-Level Examination of T Cell Infiltration, Related to Figure 5.

Immunohistochemistry of CD3 (A) and CD8 (B) cells. The scale bar, 100 mm.
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Figure S6. Higher Mitochondrial Activity Is Associated with Higher HLA Expression, Related to Figure 6.

(A) Proteomic analysis of HLA-A, HLA-B and HLA-C in Mel526 and WM266-4 cells treated with 30 mM DCA. Values are log2 ratios of LFQ proteins intensities of

treated vs. untreated cells.

(B–K) Flow-cytometry analysis of the change in the HLA-ABC (B–F) or percentage of stained cells (G–K) upon treatment with metabolic drugs: rotenone (B and G),

antimycin (C and H), oligomycin (D and I), etomoxir (E and J) and avasimibe (F and K). Data are represented as mean ± SEM. *p < 0.05; **p < 0.1.
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Figure S7. Metabolic Analysis of KO Systems, Related to Figure 6.

(A and B) Knock out validation using proteomic analysis in Mel526 (A) and WM266-4 (B).

(C–H) Seahorse measurements of oxygen consumption rate (OCR) in Mel526 (C–E) and WM266-4 (F–H), show basal respiration (C and F), maximal respiration

upon treatment with FCCP (D andG) and spare respiratory capacity, which indicates the ability of the cell to respond to increased energy demand or stress (E and

H). Data are represented as mean ± SEM. *p < 0.05; **p < 0.1. (I and J) Mitochondrial mass, as measured by MitoTracker Deep Red staining of Mel526 (I) and

WM266-4 (J) cells. Data are represented as mean ± SD. *p < 0.05; **p < 0.1.
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Figure S8. Effects of KO Systems on Antigen Presentation and Tumor Immunogenicity, Related to Figure 7.

(A and B) Flow cytometry measurement of the change in HLA-ABC and HLA-DRMFI signal (A) or percentage of stained WM266-4 cells (B). Data are represented

as mean ± SEM. *p < 0.05; **p < 0.1.

(C and D) Proteomic analysis of HLA-A, HLA-B and HLA-C in control and KO cells in WM266-4 (C) and Mel526 (D) Values are log2 label free quantification (LFQ)

intensity. Data are represented as mean ± SEM. *p < 0.05; **p < 0.1.

(E) Proteomic profile of ‘‘antigen processing and presentation’’ (GOBP category) proteins that were significantly different in at least three gene knockouts in

WM266-4 (FDR q value<0.05, S0 = 0.1). Values are log2 LFQ intensity ratio of CRISPR control to CRISPR KO.

(F and G) Protein-protein interaction network of the ‘‘antigen processing and presentation’’ (GOBP category) proteins that were significantly different in at least

three gene knockouts in Mel526 (F) and WM266-4 (G) (FDR q value<0.05, S0 = 0.1).

(H) Acat1 KO validation by proteomic analysis.

(I–K) Gene expression analysis of MHC class I (I), Pdl1 (J), and B2m (K). All values are relative to untreated CRISPR control cells. Gene expression was normalized

relative to actin. Data are represented as mean ± SEM. *p < 0.05; **p < 0.1.
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