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ABSTRACT
◥

Immunotherapy has revolutionized the treatment of advanced
melanoma. Because the pathways mediating resistance to immu-
notherapy are largely unknown, we conducted transcriptome
profiling of preimmunotherapy tumor biopsies from patients
with melanoma that received PD-1 blockade or adoptive cell
therapy with tumor-infiltrating lymphocytes. We identified two
melanoma-intrinsic, mutually exclusive gene programs, which
were controlled by IFNg and MYC, and the association with
immunotherapy outcome. MYC-overexpressing melanoma cells
exhibited lower IFNg responsiveness, which was linked with

JAK2 downregulation. Luciferase activity assays, under the con-
trol of JAK2 promoter, demonstrated reduced activity in MYC-
overexpressing cells, which was partly reversible upon mutagen-
esis of a MYC E-box binding site in the JAK2 promoter.
Moreover, silencing of MYC or its cofactor MAX with siRNA
increased JAK2 expression and IFNg responsiveness of melano-
mas, while concomitantly enhancing the effector functions of T
cells coincubated with MYC-overexpressing cells. Thus, we pro-
pose that MYC plays a pivotal role in immunotherapy resistance
through downregulation of JAK2.

Introduction
In recent years, the field of immunotherapy has joined the ranks of

surgery, radiation, chemotherapy, and targeted therapy as a pillar of
cancer therapy (1). Most cancer immunotherapies are based on the
unique characteristics of T cells. These cells can distinguish between
tumors and normal tissue by recognizing tumor-specific antigens and
can generate immune memory. Primary T-cell responses are generally
followed by the production of long-lived memory T cells that exhibit
accelerated kinetics of secondary responses upon antigen reexpo-
sure (2). Immunotherapy has proven efficacy in multiple types of
cancer, including lung, bladder, renal cancer, and melanoma (3).
Melanoma is considered as an immunogenic tumor, expressing a
variety of tumor neoantigens arising from ultraviolet-induced somatic
mutations (4). Therefore, it is not surprising that immunotherapy has
revolutionized the treatment in advanced melanoma—the 5-year
survival rate of patients with metastatic melanoma has improved from

less than 5% to more than 40% with the introduction of new immu-
notherapies, such as monoclonal anti–CTLA-4 and anti–PD-1 (5).

Adoptive cell transfer (ACT) with tumor-infiltrating lymphocytes
(TIL) is another type of immunotherapy, which demonstrates tu-
mor regressions in 50% of patients with advanced melanoma (6, 7),
with responding patients exhibiting a median survival greater than
50 months in contrast to median survival of 6.1 months in nonre-
sponders (8). However, although immunotherapy vastly improves
the prognosis of patients with advanced melanoma, the majority of
patients treated with immunotherapy will exhibit primary or secondary
resistance to immunotherapy, entailing disease progression. Therefore,
in recent years, there has been an ongoing effort to unveil factors relat-
ed to response and resistance to immunotherapy. Although there is a
growing consensus that high mutational burden (9), tumor immune
infiltration (10), and IFNg signaling (11, 12) all associate with higher
response rates to immunotherapy, the mechanisms that induce resis-
tance to immunotherapy are largely unknown. Moreover, although a
few recent articles identify immunotherapy resistance mechanisms,
such as alterations in the IFNg and antigen presentation pathways (13)
and activation of oncogenic pathways that mediate immune exclusion
(14–16), there are no available treatments targeting these resistance
mechanisms that exhibit clinical efficacy. Thus, it is of utmost impor-
tance to improve our understanding of the pathways underlying re-
sponse and resistance to immunotherapy, to enable development of
new treatment combinations and to better select patients who will
benefit from immunotherapy.

To further investigate themechanisms that govern the response and
resistance to immunotherapy, we profiled the proteomes and tran-
scriptomes of pretreatment tumor biopsies from patients with
advanced melanoma treated with immunotherapy. In a recent article
by Harel and colleagues, we observed an increase in oxidative metab-
olism in the proteomes of responding patients to immunotherapy,
which associated with increased melanoma immunogenicity through
upregulation of antigen presentation machinery (17). Here, we report
the identification of two mutually exclusive gene programs in tran-
scriptomes of immunotherapy-treated patients that are regulated by
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IFNg and MYC and the relationship to clinical outcome of patients
with advanced melanoma treated with immunotherapy. Moreover,
we demonstrate that MYC can induce IFNg and immunotherapy
resistance through transcriptional repression of the IFNg signaling
protein JAK2.

Materials and Methods
Tumor tissue collection from patients

For the TIL adoptive cell transfer (ACT) cohort, we collected
formalin-fixed, paraffin-embedded (FFPE) pretreatment tumor biop-
sies from 37 patients with advanced melanoma treated with TIL ACT.
A total of 36 patients were treated with the “Young”-TIL protocol,
whereas 1 patient was treated with the “Selected”-TIL protocol (18).
None of the included TIL ACT patients were previously treated
with PD-1 blockade. Response to therapy indicates best overall
response, as defined by RECIST v1.0. For the PD-1 blockade cohort,
we collected FFPE pretreatment tumor biopsies from 36 patients with
advanced melanoma treated with either nivolumab or pembrolizu-
mab. Response to therapy indicates best overall response according to
multidisciplinary radiologic evaluations. Written informed consent
was obtained from all patients, and all studies were conducted in
accordance with the Declaration of Helsinki, approved by the Insti-
tutional Review Board and by the Israeli Ministry of Health (approval
no. 3518/2004).

RNA sequencing and dataset analysis
RNA from preimmunotherapy FFPE tumor biopsies of patients

with advanced melanoma was extracted with RNeasy FFPE Kit (Qia-
gen, catalog no. 73504). RNA sequencing (RNA-seq) libraries were
prepared with Illumina’s Ribo Zero Gold and TruSeq stranded library
prep kits and sequenced on the Illumina HiSeq2500 platform using
paired-end sequencingwith read length of 2�125–150 bps. Readswere
aligned to the human genome reference build hg38 using STAR
aligner (19) and were quantified with FeatureCounts (20). After
filtration of lowly expressed genes (counts below 10 in more than
90% of samples), raw counts were normalized and analyzed in the R
environment according to the LIMMA pipeline (21).

PublishedRNA-seq datasets of patients withmelanoma treatedwith
PD-1 blockade (GSE91061; ref. 22) and TIL ACT (GSE100797; ref. 23)
were downloaded from theGeneExpressionOmnibus (GEO) database
and github (https://github.com/vanallenlab/schadendorf-pd1; ref. 12).
Raw sequencing data from twoPD-1 blockade–treated cohorts (10, 24)
were downloaded from the Sequence Read Archive (PRJNA312948)
and European Nucleotide Archive (PRJEB23709) and processed as
mentioned above. A melanoma single-cell (sc) RNA-seq dataset
(16, 25) was downloaded from the GEO database (GSE115978). RSEM
raw counts of The Cancer Genome Atlas skin cutaneous melanoma
(TCGA SKCM) dataset were downloaded from FireBrowse (http://
firebrowse.org) and processed as mentioned above.

Dataset analysis to compare proteomic and transcriptomic
profiles

For patients with available transcriptomic and proteomic (17)
data from the same tumor biopsy (n ¼ 73), raw proteomic data
were downloaded (https://ars.els-cdn.com/content/image/1-s2.0-
S0092867419309006-mmc1.xlsx) and lowly detected proteins (pro-
teins detected in less than 10%of samples)werefiltered out as indicated
above. For discovery of a potential bias in the proteomic data toward
detection of highly expressed genes, we first assessed gene expression

by averaging the transcripts permillion (TPM)of each transcript.Next,
we compared the detection probability, calculated as Pdetection ¼
n genes detected in proteomics and RNAseq

n genes detected in RNAseq , of high and low abundance genes

(above and below themedian of the average TPM). To assess detection
of proteins andmRNA expressed by melanoma, stromal, and immune
cells, we calculated the detection probability of previously published
melanoma, stroma, and immune cell markers (16) in our proteomic
and transcriptomic data. Finally, we assessed the dependency
between mRNA expression and protein levels by correlating the
log2 TPM values and the proteomic log2-transformed ratio between
the tumor samples and an internal control composed of five SILAC
(stable isotope labeling with amino acids)-labeled melanoma cell
lines obtained from the same tumor biopsies (17).

Transcriptome profiling of responders and nonresponders to
immunotherapy

To identify the sources of intersample variability in our transcrip-
tomic data, we performed principal component analysis on the 3,000
most variable genes after variance-stabilizing transformation of fil-
tered raw counts and removal of batch effect between the TILACT and
PD-1 cohorts by the removebatcheffect function in the LIMMA
package. The first two principal components were correlated with the
normalized expression of all quantified genes and with the Immune-
Score, a method based on gene expression signatures to infer the
fraction of immune cells in tumor samples (26). To assess the similarity
between response and resistance mechanisms to TIL ACT and PD-1
blockade, we correlated the log2 fold change of the top 500 differen-
tially expressed genes (DEG) between responders (complete or partial
response) and nonresponders (stable or progressive disease) to these
treatments; and gene set enrichment analysis (GSEA; ref. 27) normal-
ized enrichment scores of differentially expressed Hallmark gene sets
(FDR < 0.05; ref. 28). For identification of global response and
resistance mechanisms to immunotherapy, we compared the tran-
scriptomes of responders and nonresponders with TIL ACT and PD-1
blockade using the R package LIMMA pipeline, with voom normal-
ization and blocking for cohort in the design matrix (21). Normalized
and batch-corrected expression of DEGs was visualized using the R
package pheatmap. DEGs and sample cluster identification was per-
formed with Ward’s hierarchical agglomerative clustering.

Assessment of tumor cell composition from transcriptomic data in
responders and nonresponders to immunotherapy was performed
with xCell (29), a gene signature-based method for inference of the
tumor immune and stromal cell composition. To estimate which
cells within the tumor expressed the three identified gene clusters,
we averaged and standardized the log2-transformed TPM values of
each cluster gene by cell type in a melanoma scRNA dataset
(GSE115978; refs. 16, 25). To inspect the relationship between the
three gene clusters—Melanoma response, Melanoma resistance, and
Lymphocytemarkers; identified by hierarchical clustering of theDEGs
(see Results), we correlated the gene cluster scores, computed by Gene
Set VariationAnalysis (GSVA; ref. 30), for each sample in our ownTIL
ACT and PD-1 cohort (n¼ 73) and in a combined cohort (n¼ 356) of
metastatic samples from TCGA SKCM dataset and previously pub-
lished melanoma RNA-seq datasets (10, 12, 22–24). To investigate the
correlation between the three clusters by cell type, we computed the
overall expression score of each cluster in a melanoma scRNA dataset
(GSE115978; refs. 16, 25).

To assess the effect of the melanoma-intrinsic immunotherapy
resistance and response programs on treatment outcome, we compiled
the “Melanoma Immunotherapy Resistance Score” (MIRScore) by
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subtracting the Melanoma response cluster score from the Melanoma
resistance cluster score, both calculated by GSVA on the Melanoma
response and Melanoma resistance cluster genes. Next, we compared
5-year survival between patients with high (above median) and low
(below median) MIRScore, Lymphocyte markers cluster score, calcu-
lated byGSVAon the Lymphocytemakers cluster genes, and Immune-
Score in our own TIL ACT and PD-1 blockade cohorts (n ¼ 73) for
both mRNA and protein levels [after filtration for proteins which
highly correlated with mRNA expression (rp > 0.4)], as well as in a
combined immunotherapy cohort (n ¼ 288) of previously published
PD-1 blockade (10, 12, 22, 24) and TIL ACT (23) cohorts.

Characterization of theMelanoma response and resistancegene
clusters in a combined melanoma RNA-seq dataset

To better characterize the Melanoma response and resistance
cell states, we compiled a combined melanoma dataset (n ¼ 403),
comprised of seven melanoma RNA-seq datasets with available raw
counts—our own TIL ACT (n ¼ 37) and PD-1 blockade (n ¼ 36)
datasets, metastatic samples from TCGA SKCM dataset (n¼ 68), and
four previously published PD-1 blockade dataset—Hugo and collea-
gues (n¼ 27), Riaz and colleagues (n¼ 47), Gide and colleagues (n¼
73), and Liu and colleagues (n ¼ 115; refs. 10, 12, 22, 24). Next, we
compared between the transcriptomes ofMIRScorehigh (upper third, n
¼ 134) and MIRScorelow (lower third, n ¼ 135) tumors in the
combined melanoma dataset. Visualization and clustering of the top
1,000 DEGs was performed, as described above, which resulted again
in three distinct clusters of DEGs. We then assessed the similarity
between the newly and previously identified three gene clusters by
correlating their cluster scores in the combined datasets. For identi-
fication of upstream regulators associated with the MIRScorehigh and
MIRScorelow phenotypes, we performed Ingenuity upstream regulator
analysis (QIAGEN) on the top 1,000 differentially expressed genes
between the MIRScorehigh and MIRScorelow tumors (FDR < 0.01 and
absolute log2 fold change > 1.5).

MYC activity in pretreatment biopsies from responders and
nonresponders to PD-1 blockade

To validate increased MYC activity in nonresponders to immuno-
therapy, we performed MYC staining (antibodies used listed in
Supplementary Table S1A) on tissue microarrays composed of pre-
treatment biopsies of patients with advanced melanoma treated with
PD-1 blockade (n ¼ 35). Each tissue sample from each patient was
initially stainedwith hematoxylin and eosin (H&E), and representative
areas of tumors were marked by an expert pathologist morphologi-
cally. Accordingly, three 2-mm-diameter tissue cylinders were
punched out from each tumor block and deposited into a recipient
block using Manual Tissue Arrayer MTA-1 (Beecher Instruments
Inc.). Tumor sample triplicates were used as a means of overcoming
tumor heterogeneity. After array construction, a 4mm section was
H&E stained to confirm the histologic quality. A consecutive 4mm
section was used for IHC MYC staining. Quantification of MYC
staining intensity (from 0 to 5) in the nucleus or cytoplasm of tumor
cells was performed by a blinded expert pathologist with a bright-field
microscope (Olympus). High MYC staining was defined as staining
intensity ≥ 2 in at least one tissue core. Uninterpretable cores due to
loss of the tissue or excessive background staining were excluded from
the analyses. This study was approved by the Institutional Review
Board of Sheba Medical Center (Protocol SMC-2406). Moreover, we
assessed samples using GSVA (30) for the expression of Hallmark
MYC target gene sets, downloaded from the Molecular Signatures

Database (https://www.gsea-msigdb.org/gsea/msigdb/), in responders
(n ¼ 22) and nonresponders (n ¼ 14) to PD-1 blockade.

Profilingof theMelanoma response and resistancegeneclusters
in TCGA database

To further investigate the relationship between the Melanoma
response and resistance gene clusters in other malignancies, we down-
loaded from the cBio cancer genomics portal (31) available RNA-seq
and reverse phase protein array (RPPA) datasets for all TCGA tumor
types. Next, for each tumor type, we computed the correlation between
the cluster scores, computed by averaging the normalized and stan-
dardized expression of the Melanoma response and resistance gene
clusters identified in the combined melanoma datasets analysis. For
identification of proteins associated with theMIRScorehigh phenotype,
we computed the MIRScore for each sample in TCGA SKCM cohort
by GSVA and compared RPPA protein expression in MIRScorehigh

(upper third, n¼ 117) andMIRScorelow tumors (lower third, n¼ 117).

Pathway enrichment analysis for genes inversely correlated
with JAK2 expression

To verify that the MYC transcriptional program was inversely
correlated to JAK2 in the combined melanoma dataset (n ¼ 403),
we performed Hallmark pathway enrichment analysis for genes
inversely correlated to JAK2 (rp< �0.6, n ¼ 402) using a hypergeo-
metric test. Hallmark gene sets were downloaded from the Molecular
Signatures Database as indicated above.

Cells and media
Patient-derived melanoma cell lines Mel 53, Mel 90, Mel 111, Mel

131 (all obtained from surgically excised melanoma specimens of TIL
ACT–treated patients in our institute between 2008 and 2012) andMel
526 (obtained fromDr. Steve A. Rosenberg, NCI, Bethesda, MD) were
maintained in RPMI1640 medium (Biological Industries, catalog no.
01-100-1A) supplemented with 10% FBS (Biological Industries, cat-
alog no. 04-127-1A). Primary bulk TIL cultures TIL53, TIL90, and TIL
111 were obtained from surgically excisedmelanoma specimens in our
institution following a rapid expansion protocol, and cells were
cryopreserved as described previously (32). A total of 72 hours prior
to functional experiments, TIL cultures were thawed and maintained
in RPMI1640 medium supplemented with 10% FBS, 0.05 mmol/L
b-mercaptoethanol (Gibco, catalog no. 21985023), and 3,000 units/mL
of IL2 (rhIL2, Novartis, catalog no. 3000014936). 293T cells (ATCC)
were maintained in DMEM (Biological Industries, catalog no. 01-055-
1A) with 10% FBS. All cell lines were cultured for up to 2 months after
thawing and were tested routinely for Mycoplasma (Hy-Mycoplasma
Kit, Hylabs, catalog no. KI50341).

Generation of stable overexpression cell systems
The MYC overexpression vector was cloned into the pQCXIP.puro

vector using the Gibson Assembly Master Mix (NEB, catalog no.
E2611). Transfection of 293T cells was performed using TurboFect
Transfection Reagent (catalog no. R0531, Thermo Fisher Scientific)
according to the manufacturer protocol. Melanoma cell infection
with virion-containing medium was performed as described previ-
ously (33). After infection, selection was performed by addition of
1mg/mLpuromycin (MerckMillipore, catalog no. 540411) into culture
medium. All transfected cell lines were tested routinely for MYC
overexpression by qRT-PCR and Western blot analysis (see Supple-
mentary Table S1). Primers used for cloning andmutagenesis are listed
in Supplementary Table S1B.

MYC Induces Immunotherapy Resistance Through JAK2 Inhibition

AACRJournals.org Cancer Immunol Res; 11(7) July 2023 911

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/11/7/909/3343939/909.pdf by guest on 03 N

ovem
ber 2024

https://www.gsea-msigdb.org/gsea/msigdb/


IFN exposure of melanoma cell cultures
A total of 24 hours after seeding 1� 106 melanoma cells in a 10 cm

plate, cell media was substituted with 10mL ofmedia with andwithout
10 ng/mL of human recombinant IFNg protein (R&DSystems, catalog
no. 285-IF) or 1,000 IU/mL of recombinant IFN-alpha 2a protein
(Roferon-A, Roche). A total of 48 hours following IFN exposure, cells
were collected for flow cytometry (FACS) analysis as described below,
and the remaining cells were pelleted and frozen for RNA and protein
extraction as indicated below. The IFNg responsiveness score was
calculated by averaging the fold changes of two genes (HLA-B and
IFIH1) and two proteins [PD-L1 and phosphorylated (p)STAT1],
which were significantly altered between MYC and Mock-
overexpressing cells following IFNg exposure (1.5-fold decrease in
expression and P < 0.05 in at least two cell lines).

Flow cytometry
After harvesting, 1 � 105 Mock and MYC overexpression mel-

anoma cells were transferred to a 96-well U-shaped plate. Flow
cytometry staining was performed with the appropriate antibodies
(Supplementary Table S1A) diluted in FACS medium [PBS, 0.02%
sodium azide (Bioworld, catalog no. 40120990), and 0.5% BSA (MP
Biomedicals catalog no. 0216006980)] on ice for 30minutes. For
controls, we used appropriate isotype controls for conjugated
antibodies or secondary antibodies only for unconjugated antibo-
dies. Following incubation, cells were centrifuged (5minutes, 500 �
g, 4�C), washed, and resuspended in 200 mL FACS medium and
collected for FACS analysis. All experiments were performed using
a MACSquant Analyzer 10 Flow Cytometer (Miltenyi Biotec), and
data analysis was conducted in the Kaluza software (Beckman
Coulter Life Sciences).

RNA extraction, cDNA preparation, and qRT-PCR
RNA was extracted from cultured melanoma cells using TRI

Reagent (Sigma-Aldrich, catalog no. T9424) according to manufac-
turer protocol. cDNA was generated by the qScript cDNA Synthesis
Kit (Quantabio, catalog no. 95047). Forward and reverse primers were
designed from different exons to eliminate possible DNA contami-
nation. Gene transcripts were detected using PerfeCTa SYBR Green
FastMix (Quantabio, catalog no. 95071). The qRT-PCR reactions were
run in triplicates of 20 ng RNA in 10 mL per well, on a StepOnePlus
Real-Time PCR system (Applied Biosystems). Reactions were nor-
malized to the 18S endogenous control. Relative expression was
calculated using 2�DDCt equation. The detailed list of primers used
for qRT-PCR is in Supplementary Table S1C.

Protein extraction and Western blot analysis
Cultured Mock and MYC overexpression melanoma cells were

washed with PBS and lysed in RIPA lysis buffer (Bioworld, catalog
no. 42020032-2), DNAse (MERCK, catalog no. 69182), and phospha-
tase and protease inhibitor cocktail (Bimake, catalog nos. 14001 and
15001) on ice for 20minutes. Insoluble material was removed by
centrifugation at 14,000 rpm for 20minutes at 4�C. Protein concen-
tration was measured using Pierce BCA protein kit (Thermo Fisher
Scientific, catalog no. 23225). A total of 50mg of proteinwas loaded and
separated by 6%–15% SDS-PAGE, transferred onto nitrocellulose
membranes (Bio-Rad, catalog no. 1704159), and incubated with
specific antibodies (Supplementary Table S1A). The antigen–
antibody complexes were visualized by a standard enhanced chemi-
luminescence detection kit for horseradish peroxidase (Biological-
Industries, catalog no. 20-500-1000). Densitometrywith ImageJ (NIH)
was used for protein quantification.

Luciferase reporter assay
The JAK2 promoter sequence (NM_001233195, �1,000 to þ100

bps from transcription start site) was amplified using a thermocycler
(Applied Biosystems 2720 Thermal Cycler, Thermo Fisher Scientific,
catalog no. 4359659) and cloned using the Gibson Assembly Master
Mix (New England Biolabs, catalog no. E2611) into pGL4.14 vector
(Promega), downstream of the Firefly luciferase gene. After identifi-
cation of three MYC binding sites in the JAK2 promoter using the
Eukaryotic Promoter Database (34), the three MYC binding sites were
mutated by replacing the Cytosine (C) base with adenine (A) using
KOD Hot Start DNA Polymerase (MERCK, catalog no. 71086). To
measure the effect of MYC overexpression on JAK2 promoter activity,
Firefly luciferase reporter vectors under the control of wildtype or
mutant JAK2 promoter were cotransfected with a pRL-TK Renilla
luciferase control reporter vector (Promega, catalog no. E2241) into
MYC and Mock-overexpressing melanoma cells in a 1:10 ratio using
jetPRIME transfection reagent (Polyplus, catalog no. 114) according to
manufacturer’s instructions. After 24 hours, cells were lysed using
passive lysis buffer (Promega, catalog no. E1941), and luciferase
activity was measured using a Dual Luciferase Reporter Assay System
(Promega, catalog no. 1960) in a GlowMax microplate reader (Pro-
mega) and normalized to the Renilla signal.

MYC and MAX silencing by siRNA
A total of 24 hours after seeding 2.5� 105melanoma cells in a 6-well

plate, cells were transfected with 20 nmol/L of MYC (Dharmacon,
catalog no. L-003282-02) orMAX (Dharmacon, catalog no. L-010092-
00) ON-TARGETplus SMARTpool siRNA or scrambled sequence
siRNA using the jetPRIME transfection reagent (Polyplus, catalog no.
114) according to manufacturer’s instructions. After incubation at
37�C overnight, the transfected melanoma cells were washed and
recultured with fresh RPMI1640 based media. Gene silencing was
validated by qRT-PCR and Western blot analysis.

IFNg secretion via ELISA
MYC or Mock-overexpressing melanoma cells transfected with

either MAX or control siRNA were coincubated with autologous TILs
in a 2.5:1 effector to target cell ratio for 18 hours. Following incubation,
50 mL of supernatant was collected from each sample and the amount
of IFNg was evaluated by a standardized ELISA (BioLegend, catalog
no. 430104) according tomanufacturer’s instructions. Absorbancewas
measured using Glowmax plate reader (Promega).

CD137 (4-1BB) upregulation assay
MYC or Mock-overexpressing melanoma cells were coincubated

with autologous TILs in a 2.5:1 effector to target cell ratio for 18 hours
to measure CD137 expression. Following incubation, TILs were
collected and CD8þ T cells were analyzed for CD137 expression by
flow cytometry using CD8a (BioLegend, catalog no. 301008) and
CD137 (BioLegend, catalog no. 309810) antibodies.

TIL degranulation assay
MYC or Mock-overexpressing melanoma cells were coincubated

with autologous TILs in a 2.5:1 effector to target cell ratio for a total of
6 hours with CD107a antibody (BioLegend, catalog no.328607).
After 1 hour of incubation, Monensin A solution (BioLegend,
catalog no. 420701) was added to the culture for an additional
5 hours. Following incubation, the cells were stained with CD8
antibody (BioLegend, catalog no. 344721) to measure the
CD8þCD107aþ population and CD107a mean fluorescence inten-
sity by flow cytometry. Degranulation was assessed by comparison
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with base line CD107a expression of TILs which were not incubated
with melanoma cells.

Ruxolitinib exposure of melanoma cell cultures
A total of 24 hours after seeding 3� 105 melanoma cells in a 6-well

plate, cell media was substituted with 3 mL of media with and without
30 mmol/L of the JAK inhibitor ruxolitinib (Selleckchem, catalog no.
S1378). A total of 24 hours following ruxolitinib exposure, cells were
collected and coincubated with autologous TILs in a 2.5:1 effector to
target cell ratio for 18 hours to measure IFNg secretion as described
above.

Statistical analysis
The R software (version 4.0.3) was used for statistical analysis and

visualization. Unless mentioned otherwise, the statistical test used for
continuous variables was the unpaired two-tailedWelch t test, whereas
categorical variables were analyzed using Fisher exact test. Correction
for multiple testing was made with the Benjamini–Hochberg proce-
dure. Differential gene expression analysis was according to the
LIMMARpackage pipeline. Correlation analysis was performed using
the Pearson correlation coefficient. For pathway enrichment analysis,
annotated gene sets were downloaded from the Molecular Signatures
Database. Identification of overrepresented or underrepresented path-
ways in a subgroup of genes was performed using the hypergeometric
test. Identification of over or underrepresented pathways in a ranked
gene list was performed using theGSEA algorithm (27). Kaplan–Meier
plots were generated using the survival and survminer R packages.
When implementing survival analysis on gene list scores, we compared
the upper and lowermedians, unlessmentioned otherwise.P values for
survival analyses were computed using the log-rank test.

Code and data availability
RNA-seq data were uploaded to the NCBI GEO (GSE160638). All

other data supporting the findings of this study will be available from
the corresponding authors upon reasonable request.

Results
Assembly of preimmunotherapy patient cohort

In a recent article by Harel and colleagues, we profiled the pre-
treatment proteomes of responders and nonresponders to TIL ACT
and PD-1 blockade in patients with advanced melanoma (17). We
identified a link between oxidativemetabolism and upregulation of the
antigen processing and presentation machinery in responders to
immunotherapy, whereas in the proteomic analysis, we focused on
melanoma-intrinsic pathways associated with immunotherapy out-
come. Here, we integrated the proteomic findings with RNA-seq from
the same tumor biopsies. Thus, we further deepened our biological and
clinical findings from the proteomic analysis and obtained a more
accurate description of low abundance genes such as cytokines and
immune-related transcriptional networks. These are also of impor-
tance to our understanding of the underlying mechanisms of response
and resistance to immunotherapy (14, 22). In total, we assembled a
cohort of 73 preimmunotherapy tumor biopsies from patients treated
with either TILACT (n¼ 37) or PD-1 blockade (n¼ 36) with available
transcriptomic and proteomic data (patient characteristics in Supple-
mentary Table S2A). All of the TIL ACT–treated patients were PD-1
blockade na€�ve, and in bothTILACTandPD-1 blockade cohorts, prior
treatments with ipilimumab or MAPK inhibitors did not significantly
alter the response to either treatment, although the number of pre-
viously treated patients was low (Supplementary Table S2B and S2C).

The two main clinical differences between the TIL ACT and PD-1
blockade cohorts were the age at treatment initiation (53.4 vs. 60.7, P¼
0.02) and the number of previous treatments (1.6 vs. 0.5, P < 0.001;
Supplementary Table S2D). These differences can be attributed to the
fact that TIL ACT requires lymphodepletion with high-dose chemo-
therapy and thus it is less suitable for older patients, and that it is still an
experimental treatment given only after failure of standard-of-care
treatments. Male gender and normal plasma lactate dehydrogenase
were associatedwith higher response rate in theTILACTcohort aswas
reported previously (ref. 17; Supplementary Table S2B).

Transcriptome profiling of responders and nonresponders to
immunotherapy

After RNA-seq, alignment and filtration of lowly expressed genes
and lowly detected proteins, we quantified 17,000 genes and 7,300
proteins that were expressed in both cohorts. To evaluate the rela-
tionship between expression and detection probability in the prote-
omics data, the average TPM of each gene was plotted by the percent
detection in the proteomics data. In agreement with previous arti-
cles (35, 36), we observed a detection bias towardmore abundant genes
in the proteomic data (Supplementary Fig. S1A), as was reflected by a
3-fold increase in the detection probability of abundant genes (above
themedian of the average TPMvalues) comparedwith genes below the
median of the average TPM values (60.5% vs. 19.3% detection prob-
ability, Fisher exact test, P < 0.0001). Pathway enrichment analysis
demonstrated overrepresentation of pathways related to cell homeo-
stasis in the detected proteins, such as spliceosome-, proteasome-,
ribosome-, metabolism-, andDNA replication-related pathways (Sup-
plementary Fig. S1B; Supplementary Table S3A). This was accompa-
nied by underrepresentation of pathways related to signal transduction
and immune activation, such as cytokine, hedgehog, JAK-STAT, and
TGFb signaling pathways (Supplementary Fig. S1B; Supplementary
Table S3B). Because the proteomic data focusedmainly onmelanoma-
intrinsic proteins, we indeed observed a high detection probability of
melanoma cell markers compared with immune cell markers (77% vs.
49.5%, Fisher exact test, P < 0.0001; Supplementary Fig. S1C). In the
transcriptomic data, we quantified more than 95% of melanoma,
stroma, and immune cell markers. Thus, RNA-seq was complemen-
tary to our proteomic profiling, and the increased depth of coverage
allowed us to better assess immune-related and lowly expressed genes
such as cytokines, signal transduction molecules, and immune cell
activation markers.

One of themain advantages of profiling both the transcriptome and
proteome from the same tumor biopsies is the ability to assess the
dependence between mRNA expression and protein levels. We
observed a weak correlation between mRNA expression and protein
levels on the gene level (median Person r ¼ 0.25; Supplementary
Table S3C). However, we found that the proteins exhibiting a high
correlation between mRNA and protein levels (Pearson r above upper
quartile) were enriched for processes such as epithelial–mesenchymal
transition, hypoxia, and IFN signaling, whereas proteins with low
correlation (Pearson r below lower quartile) were enriched for cell
homeostasis processes such oxidative phosphorylation and DNA
repair (Supplementary Tables S3D and S3E). These findings agree
with a recent article that demonstrates that homeostatic cellular
functions are predominantly regulated posttranscriptionally and that
induced cellular functions, such as signal transduction and immune
activation, are driven through transcriptional regulation (37).

To identify the sources of intersample variability in our transcrip-
tomic data, we performed principal component analysis on the 3,000
most variable genes (Supplementary Fig. S1D). The first primary

MYC Induces Immunotherapy Resistance Through JAK2 Inhibition

AACRJournals.org Cancer Immunol Res; 11(7) July 2023 913

D
ow

nloaded from
 http://aacrjournals.org/cancerim

m
unolres/article-pdf/11/7/909/3343939/909.pdf by guest on 03 N

ovem
ber 2024



component (PC1) was significantly correlated with the extent of tumor
immune infiltration as assessed by the ImmuneScore (rp ¼ 0.98, P <
0.0001; Supplementary Fig. S1E), a method based on gene expression
signatures to infer the fraction of immune cells in tumor samples (26).
The gene that was most highly correlated with the second primary
component was with the microphthalmia-associated transcription
factor MITF (rp ¼ 0.87, P < 0.0001; Supplementary Fig. S1E), a key
transcription factor for melanocyte development, differentiation, and
survival (38). Hence, the two main sources of intersample variation
were the extent of tumor immune infiltration and the degree of
differentiation of the melanoma cells.

In agreement with Harel and colleagues, we found that the tran-
scriptomic features associated with response and resistance to TIL
ACT and PD-1 blockade were very similar (Supplementary Fig. S1F
and S1G). When comparing the transcriptome of responders and
nonresponders to TIL ACT, we did not find DEGs below the adjusted
P-value cutoff (moderated t test, FDR < 0.05; Supplementary
Table S4A); however, we identified 1,048 differentially expressed genes
in the PD-1 blockade cohort (moderated t test, FDR < 0.05;
Supplementary Table S4B). We identified a strong correlation
between the log2 fold change of the top 500 DEGs in each cohort
(rp ¼ 0.74, P < 0.0001; Supplementary Fig. S1F), as well as a strong
correlation between the GSEA (27) normalized enrichment scores
(rp ¼ 0.84, P < 0.0001; Supplementary Fig. S1G) of differentially
expressed Hallmark gene sets (FDR < 0.05; Supplementary
Table S4C and S4D; ref. 28).

Because of the similarities in response and resistance pathways to
TIL ACT and PD-1 blockade, we conducted a joint analysis to
identify global response and resistance mechanisms to immuno-
therapy. Transcriptome comparison between responders and non-
responders to both treatments identified 2,150 DEGs (moderated t
test, FDR < 0.05; Fig. 1A; Supplementary Table S5A). Hierarchical
clustering of samples according to expression of DEGs enabled us to
divide the patients into three distinct clusters, Immune high, med,
and low, which differed in the extent of tumor immune infiltration
as assessed by the ImmuneScore (Fig. 1B) and clinical outcome
(Fig. 1C). Whereas patients in the Immune high cluster had 95%
overall response rate, patients in the Immune low cluster had only
9% response rate (Fisher exact test, P < 0.0001). To examine
whether the abundance of particular cell types associated with
response to immunotherapy, we used xCell, a gene signature–
based method for inference of the tumor immune and stromal cell
composition (29). In accordance with previous reports (10, 14, 16),
we did not find a single cell type whose estimated abundance
associated with response to immunotherapy, but rather a milieu
of immune cells, most notably B cells, T cells, and dendritic cells
(Fig. 1D; Supplementary Table S5B).

Hierarchical clustering of the 2,150 DEGs resulted in three distinct
gene clusters (Fig. 1A; Supplementary Table S5C). Gene Ontology
enrichment analysis for upregulated genes in nonresponders (Cluster
3 genes) demonstrated overrepresentation of oncogenic pathways such
as cell cycle and dedifferentiation (Supplementary Table S5D),whereas
gene clusters which were upregulated in responders (Cluster 1 and
Cluster 2 genes) were enriched for immune-related pathways such as
immune effector process and IFN response genes (Supplementary
Table S5E and S5F). Although Cluster 1 genes were predominantly
enriched for innate immunity-related pathways such as myeloid
activation, Cluster 2 genes were enriched for adaptive immunity-
related pathways such as lymphocyte activation.Distribution of cluster
genes in each cell type in a melanoma scRNA-seq dataset (16, 25)
demonstrated that Cluster 2 genes were expressed mostly within

immune cells and Cluster 1 genes were relatively equally distributed
within all cell types, including melanoma cells (Fig. 1G). In accor-
dance, Cluster 2 genes highly correlated with the ImmuneScore (rp ¼
0.95, P < 0.0001; Fig. 1F) and contained numerous Lymphocyte
marker genes such as T-cell markers (CD3 and CD8) and B-cell
markers (CD19 and CD20). Thus, we concluded that Cluster 2 genes
(“Lymphocyte markers”) represent lymphocyte infiltration and acti-
vation within tumors. Distribution of gene cluster scores, calculated by
GSVA (30), demonstrated a strong inverse correlation betweenCluster
1 and Cluster 3, both in our immunotherapy cohort (rp ¼ �0.95, P <
0.0001; Fig. 1E) and in a combined cohort of melanoma RNA-seq
datasets (n ¼ 356) comprised of metastatic samples from TCGA
SKCM dataset and previously published immunotherapy pretreat-
ment RNA-seq datasets of patients withmelanomawhich were treated
with either PD-1 blockade or TIL ACT (refs. 10, 12, 22–24; rp¼�0.89,
P < 0.0001; Supplementary Fig. S2B). Cluster score distribution by cell
type in a melanoma scRNA dataset demonstrated a strong inverse
correlation between Cluster 1 and Cluster 3, most prominently within
melanoma cells (rp ¼ �0.89, P < 0.0001; Fig. 1H) and cancer-
associated fibroblasts (rp ¼ �0.78, P < 0.0001; Supplementary
Fig. S2A). Melanoma cells from tumors that progressed on PD-1
blockade exhibited higher Cluster 3 scores, as well as lower Cluster 1
scores, compared with anti–PD-1–na€�ve melanomas (Welch t test, P <
0.0001; Fig. 1G andH; Supplementary Fig. S2C). Thus, we concluded
that Cluster 1 (“Melanoma response”) and Cluster 3 (“Melanoma
resistance”) represent two mutually exclusive and melanoma-intrinsic
cell programs, which determine immunotherapy responsiveness
and resistance.

To assess the effect of the melanoma-intrinsic immunotherapy
resistance and response programs on treatment outcome, we compiled
the MIRScore by subtracting the Melanoma response cluster score
from the Melanoma resistance cluster score. Although previous
reports have identified immune cell infiltration as the main predictor
for immunotherapy outcome (14, 39), we found that compared with
tumor immune cell infiltration, as assessed by ImmuneScore or the
Lymphocyte marker gene cluster score, the MIRScore exhibited
comparable or better performance as a predictor for overall survival
following immunotherapy (Fig. 1I; Supplementary Fig. S2D and S2E).
This finding was observed both in our immunotherapy cohort at the
mRNA (Fig. 1I) and protein levels (Supplementary Fig. S2D) and in
the combined cohort of previously published melanoma RNA-seq
datasets (Supplementary Fig. S2E).

Finally, although we previously observed an upregulation of
oxidative metabolism in the proteomes of responders to immuno-
therapy (17), we did not observe an enrichment for oxidative
metabolism gene sets in the transcriptomes of the same patients.
As mentioned above, we detected an enrichment for oxidative
phosphorylation proteins in genes with low correlation between
mRNA and protein levels, thus suggesting that oxidative metabo-
lism is regulated posttranscriptionally.

MYC and IFNg are regulators of the Melanoma resistance and
response cell programs

To better characterize the melanoma-intrinsic immunotherapy
response and resistance cell states, we compiled a combinedmelanoma
dataset (n ¼ 403), comprised of seven melanoma RNA-seq datasets
with available raw counts—our TIL ACT (n¼ 37) and PD-1 blockade
(n¼ 36) cohorts, metastatic samples from TCGA SKCM dataset (n¼
68), and four previously published PD-1 blockade datasets: Hugo and
colleagues (n¼ 27), Riaz and colleagues (n¼ 47), Gide and colleagues
(n ¼ 73), and Liu and colleagues (n ¼ 115; refs. 10, 12, 22, 24).
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Figure 1.

Transcriptome profiling of responders and nonresponders to immunotherapy. The transcriptome of responders (n¼ 41) and nonresponders (n¼ 32) to TIL ACT and
PD-1 blockade was assessed via RNA-seq. A, Hierarchical clustering of 2,150 differentially expressed genes (moderated t test, FDR < 0.05) between responders and
nonresponders to immunotherapy and identification of three main DEG clusters and threemain immune clusters of patients. See also Supplementary Table S5A and
S5C. The ImmuneScore (B) and 5-year survival (C) of patients in the Immune high (n¼ 20), med (n¼ 31), and low (n¼ 22) clusters. D, xCell scores of immune cells
which were differentially distributed between responders (n ¼ 41) and nonresponders (n¼ 32) to immunotherapy (Wilcoxon rank-sum test, FDR < 0.05). See also
Supplementary Table S5B. E, Pearson correlation between the three cluster scores. F, Pearson correlation between the Lymphocyte marker cluster score and the
ImmuneScore.G,Distribution of cluster genemean expression in amelanoma scRNA-seq dataset (GSE115978). CAF, cancer-associated fibroblasts; Endo, endothelial
cells.H,Pearson correlation between theMelanoma response and resistance cluster scores in PD-1 blockade-na€�ve (pre-PD1) and resistant (post-PD1)melanomacells
(GSE115978). I, Comparison of 5-year survival between patients with high (above median, n ¼ 36) and low (below median, n ¼ 36) MIRScore, computed by
subtracting the Melanoma response cluster score from the Melanoma resistance cluster score, Lymphocyte marker cluster score, and the ImmuneScore in our
immunotherapy cohort. P values for survival analyses were computed using the log-rank test. For the box plots in B, D, and G, the horizontal lines within each box
denote median values, the bottom and top edges of the box represent the 25th and 75th percentiles, and the whiskers extend to the lowest and highest datapoints
within 1.5 times the interquartile range from the edge of the box.
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Transcriptome comparison between tumors with high MIRScore
(upper third, n ¼ 134) and low MIRScore (lower third, n ¼ 135) in
the combined melanoma dataset resulted in more than 7,800 DEGs
(moderated t test, FDR < 0.05; Supplementary Table S6A). Hierar-
chical clustering of the top 1,000 DEGs demonstrated segregation into
threemain clusters, whichwere strongly correlated with the previously
identified Melanoma response, Leukocyte markers, and Melanoma
resistance gene clusters (Fig. 2A; Supplementary Fig. S3A; Supple-
mentary Table S6B). Pathway enrichment analysis of the Molecular
Signature Database–curated and Hallmark gene sets identified “Cairo
hepatoblastoma classes up” as themost overrepresented gene set in the
new Melanoma resistance cluster (Supplementary Table S6C). This
gene set represents genes that are upregulated in a highly proliferative
and dedifferentiated subclass of hepatoblastoma, characterized by
upregulation of MYC signaling (40). The top two enriched Hallmark
gene sets were MYC target genes (Supplementary Table S6D). In the
new Melanoma response cluster, the most overrepresented gene sets
were genes that were upregulated upon EZH2 knockdown and IFN
response genes (Supplementary Table S6E and S6F). EZH2, a histone
methyltransferase, which is the functional enzymatic component of
the Polycomb Repressive Complex 2, is upregulated by MYC and can
induce immunotherapy resistance by repression of the antigen pro-
cessing and presentation pathway in melanoma cells (41, 42). Because
both of the top overrepresented pathways in the Melanoma resistance
and response clusters associated with MYC activation and inhibition,
we recognized MYC as a potential facilitator of the melanoma resis-
tance phenotype. Further corroborating this assumption, Ingenuity
upstream regulator analysis in ingenuity pathway analysis (IPA) iden-
tified MYC as the top upstream regulator associated with the Mela-
noma resistance phenotype (activation Z-score ¼ 6.2, P < 0.0001),
whereas IFNg was the top upstream regulator associated with the
Melanoma response phenotype (activation Z-score ¼ �9.8, P <
0.0001; Fig. 2B). Comparison of MYC mRNA expression between
the three patients’ clusters demonstrated upregulation of MYC
mRNA in the Immune low group (P ¼ 0.03, Welch t test; Supple-
mentary Fig. S3B). We further observed an upregulation of MYC
activity in pretreatment biopsies from nonresponding patients to
PD-1 blockade, demonstrated by a 4-fold increase in high MYC
nuclear stain [41.2% (n ¼ 18) vs. 11.1% (n ¼ 17), Fisher exact test,
P ¼ 0.06; Fig. 2C] and overrepresentation of MYC target genes in
transcriptomes of nonresponders (n ¼ 14) versus responders
(n ¼ 22) to PD-1 blockade (P < 0.01, Welch t test, Fig. 2D), as
assessed by GSVA (30). No significant difference in high MYC
cytoplasmic stain was observed between responders and nonre-
sponders (38.9% vs. 17.6%, Fisher exact test, P ¼ 0.26). Comparison
between protein expression of MIRScorehigh (upper third, n ¼ 117)
and MIRscorelow (lower third, n ¼ 117) tumors in TCGA SKCM
cohort revealed that MYC was among the most significantly upre-
gulated proteins in MIRScorehigh tumors (Fig. 2E; Supplementary
Table S6G). Taken together, we suggest that the Melanoma response
and resistance cell programs are regulated by the opposing func-
tions of IFNg and MYC, which dictate immunotherapy outcome.

To assess whether the MYC and IFNg controlled Melanoma
response and resistance clusters reflected mutually exclusive cell
programs in other malignancies, wemeasured the correlation between
the two cluster scores in RNA-seq data from 32 cancer types in TCGA
(Supplementary Table S6H). Indeed, the Melanoma response and
resistance clusters inversely correlated (rp < �0.45, P < 0.0001) in all
cancer types (Supplementary Fig. S3C). Thus, we suggest that there is a
strong inverse correlation between MYC and IFNg activity across a
broad spectrum of tumors.

MYC overexpression induces IFNg resistance through JAK2
downregulation

Several articles report that IFN signaling can inhibit MYC expres-
sion through both downregulation of MYC mRNA and increased
proteasomal degradation (43, 44). Therefore, it is unclear whether the
overrepresentation of MYC target genes in the Melanoma response
cluster, which is regulated by IFNg , is causal (due to a direct inhibitory
effect of MYC on IFN signaling) or circumstantial (a lack of IFN
signaling prevents MYC inhibition in a priori IFN-resistant tumors).
To answer this question, stably transfected cells with MYC and Mock
overexpression vectors from patient-derived melanoma cell cultures
(Supplementary Fig. S4A) were exposed to IFNg for 48 hours. Fol-
lowing IFNg exposure, all Mock transfected cell lines were responsive
to IFNg , as exhibited by upregulation in seven IFNg-stimulated genes
(B2M,HLA-B, IFIH1, IRF1, JAK2,PARP9, and STAT1), PD-L1 protein
expression, and IFNg-mediated phosphorylation of STAT1 at Y701
(pSTAT1), the downstream effector of IFNg signaling (Supplementary
Fig. S4B–S4D). MYC overexpression did not significantly affect IFNg
responsiveness in cells from an Immune high responder to TIL ACT
(Mel 111) and a patient-derived melanoma cell line (Mel 526). In
contrast, MYC-overexpressing cells from Immune low nonrespon-
ders to TIL ACT (Mel 53, 90, and 131) demonstrated a significant
reduction in IFNg responsiveness, as reflected by a decrease both
induction and expression of IFNg-stimulated genes, PD-L1 expres-
sion, and pSTAT1 following IFNg exposure (Fig. 3A–C; Supple-
mentary Fig. S4E and S4F).

To assess the level ofMYC-induced IFNg resistance, we constructed
an IFNg responsiveness score by averaging the fold changes of two
genes (HLA-B and IFIH1) and two proteins (PD-L1 and pSTAT1) that
were significantly altered following IFNg exposure between MYC and
Mock-overexpressing cells in at least two cell lines (Fig. 3D). Indeed,
the IFNg responsiveness score showed a spectrum of MYC-induced
IFNg resistance, with the greatest effect in the immune low TIL ACT-
resistant melanomas and almost no effect in the Immune high TIL
ACT–responsive melanoma cell line (Fig. 3D). Hence, MYC upregu-
lation can induce IFNg resistance in predisposed tumors.

The IFNg signaling pathway is initiated by the binding of IFNg to its
receptor, a heterodimer of the IFNGR1 and IFNGR2 chains, followed
by phosphorylation of JAK1, JAK2, and STAT1 (45). In light of the
decrease in IFNg-induced pSTAT1 in MYC-overexpressing cells after
IFNg exposure, we speculated that MYC affected IFNg signaling
upstream of STAT1 Y701 phosphorylation. To address this hypoth-
esis, we mapped the mRNA and protein expression of the IFNg
signaling pathway upstream of pSTAT1 in both MYC and Mock-
overexpressing cell lines. MYC overexpression significantly reduced
JAK2 mRNA and protein expression in all of the Immune low
melanoma cell lines, but not in Mel 111 and Mel 526 (Fig. 4A–C;
Supplementary Fig. S5A and S5B). MYC target genes were the most
significantly enriched Hallmark pathway (hypergeometric test, FDR <
0.0001) in genes which were strongly inversely correlated (rp < �0.6)
with JAK2 mRNA in the combined melanoma dataset (n ¼ 403;
Supplementary Fig. S5C). Because JAK2 mutations are shown to
induce acquired resistance to PD-1 blockade (13), we speculated that
MYC induced immunotherapy resistance by JAK2 downregulation.
JAK2 was the only member of the IFNg signaling pathway that
had a significant correlation between its fold reduction in MYC-
overexpressing cells and the IFNg responsiveness score (rp ¼ 0.93,
P ¼ 0.02; Fig. 4D), suggesting that indeed the mechanism by which
MYC confers IFNg resistance is through JAK2 downregulation.

Phosphorylation of STAT1 also occurs following IFNa signaling.
However, although JAK2 is essential for IFNg signaling, it is not
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Figure 2.

c-Myc and IFNg are regulators of the Melanoma resistance and response cell programs. A, Hierarchical clustering of the top 1,000 DEGs between MIRScore high
(upper third, n ¼ 134) and low (lower third, n ¼ 135) tumors in seven combined melanoma RNA-seq datasets with available raw counts—our TIL ACT and PD-1
blockade datasets, four previously published PD-1 blockade datasets (GSE78220, GSE91061, PRJEB23709, and phs000452.v3.p1; refs. 10, 12, 22, 24) and metastatic
samples from TCGA SKCM dataset. See also Supplementary Table S6A and S6B. B, IPA upstream regulator analysis of DEGs between MIRScorehigh and MIRScorelow

tumors (top 1,000 DEGs with absolute fold change > 1.5). The top 100 DEGs (ranked by P value) regulated by MYC or IFNg are shown. The left column in each panel
represents the log2 fold change (logFC) between MIRScorehigh andMIRScorelow tumors, whereas the right column represents the expected regulatory effect of each
transcription regulator as stored in the Ingenuity Knowledge Base. C, Right: The percent of samples with high nuclear MYC stain in a tumor microarray (TMA) of
pretreatment biopsies from responders (R, n ¼ 18) and nonresponders (NR, n ¼ 17) to PD-1 blockade. Left: Representative 0.5 mm2 images of MYC staining in a
responder and nonresponder to PD-1 blockade from the TMA. D, MYC activity, as assessed by GSVA of Hallmark MYC targets gene sets, in transcriptomes
of responders (R, n ¼ 22) and nonresponders (NR, n ¼ 14) to PD-1 blockade. E, Protein expression of MYC in MIRScorehigh (upper third, n ¼ 117) and MIRScorelow

(lower third, n¼ 117) tumors, as assessed by RPPA from TCGA SKCM dataset. See also Supplementary Table S6G. P values in C–Ewere calculated usingWelch t test.
� , P <0.05; ��, P < 0.01; ��� , P < 0.001; ���� , P < 0.0001. Bar plot data are represented asmeanþ SEM. For the box plots inC andD, the horizontal lineswithin each box
denote median values, the bottom and top edges of the box represent the 25th and 75th percentiles, and the whiskers extend to the lowest and highest data
points within 1.5 times the interquartile range from the edge of the box.
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Figure 3.

MYC overexpression induces IFNg resistance in patient-derived melanoma cell lines. Patient-derived melanoma cell cultures were stably transfected with MYC or
Mock overexpression vectors, followed by exposure to 10 ng/mL of recombinant IFNg for 48 hours. A and B, Relative mRNA expression of seven IFNg-stimulated
genes via qRT-PCR (A) andPD-L1medianfluoresce intensity viaflowcytometry (B) betweenMYCandMock-overexpressing cells.C, Top:Western blotswere used to
assess IFNg-induced STAT1 phosphorylation (pSTAT1) in cells with and without MYC overexpression, as assessed by immunoblot densitometry. Bottom:
Representative immunoblots of pSTAT1. Each individual experiment is delineated. D, Top: Visualization of fold changes and P values of IFNg response genes
(HLA-B and IFIH1) and proteins (PD-L1 and pSTAT1) significantly altered between MYC and Mock-overexpressing cells following IFNg exposure (1.5-fold decrease in
expression and P < 0.05 in at least two cell lines). Label colors represent the immune cluster of the tumor fromwhich themelanoma cell lines were derived (unknown
for Mel 526, see Fig. 1A and B). NA, nonapplicable. Bottom: The IFNg responsiveness score for each MYC-overexpressing melanoma cell line, as calculated by the
mean fold change of the four significantly altered IFNg response genes and proteins. Bar plot data are represented as meanþ SEM, where each dot signifies a single
experiment. P values in A–C were computed using a paired t test.�, P < 0.05; �� , P < 0.01; ��� , P < 0.001.
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Figure 4.

MYC-induced IFNg resistance is associated with JAK2 downregulation. The expression of the IFNg signaling pathway components in MYC and Mock stably
transfected cell frompatient-derivedmelanoma cell lineswas determined.A,Relativemedian fluorescence intensity (MFI) via flow cytometry of IFNg receptor chains
IFNGR1 and IFNGR2 between MYC andMock-overexpressing cells. B, Top: Relative protein expression, as assessed by immunoblot densitometry, of the intracellular
components of the IFNg signaling pathway. Bottom: Representative immunoblots of the IFNg signaling proteins. Each individual experiment is delineated.
C, Visualization of fold changes and P values of the IFNg signaling genes (top) and proteins (bottom) between MYC and Mock-overexpressing cells. Label colors
represent the immune cluster of the tumor from which the melanoma cell lines were derived (unknown for Mel 526, see Fig. 1A and B). NA, Nonapplicable. D, Top:
Correlation matrix between the relative protein expression of the IFNg signaling pathway components in MYC-overexpressing cells versus Mock and the IFNg
responsiveness score (IFNg score) as calculated in Fig. 3D. Bottom: JAK2 relative expression inMYC-overexpressing cells versusmock. Bar plot data are represented
as mean þ SE, where each dot represents a single experiment. P values in A and B were computed using a paired t test. � , P < 0.05; �� , P <0.01; ��� , P < 0.001.
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required for IFNa signaling, as STAT1 and STAT2 phosphorylation
occurs through JAK1 and TYK2 signaling (46). Therefore, we
investigated whether IFNa signaling was hindered in the Immune
low cell lines in addition to IFNg signaling. We did not observe a
significant reduction in IFNa responsiveness, as reflected by similar
expression and induction of three IFNa-stimulated genes (B2M,
IFIH1, and PARP9), following IFNa exposure for 48 hours (Sup-
plementary Fig. S6A–S6C). Thus, MYC overexpression selectively
inhibits IFNg signaling.

MYC-induced JAK2 silencing is dependent upon MYC/MAX
heterodimerization

The MYC oncoprotein hallmark role as a transcriptional acti-
vator is well established; however, MYC is also a potent transcrip-
tional repressor. MYC can repress a wide array of genes, most
notably cell adhesion and cell-cycle inhibitory genes (47). To assess
whether MYC was a direct transcriptional repressor of JAK2, we
first asked whether there were MYC binding motifs in the JAK2
promoter. Indeed, query of MYC binding sites in the JAK2 pro-
moter region using the Eukaryotic Promoter Database identified
three MYC binding motifs in the JAK2 promoter (Fig. 5A). The
sequence of the two proximal binding motifs is CACGCG, the most
common MYC E-box variant, whereas the distal binding motif
sequence is CACCTG, a less potent MYC E-box variant (48).
Transfection of MYC and Mock-overexpressing cell lines with a
luciferase reporter vector under the control of JAK2 promoter
(JAK2 prom-Luc) demonstrated more than a 2-fold reduction in
luciferase activity in MYC-overexpressing cells (paired t test, P ¼
0.0004; Fig. 5B). To investigate whether MYC directly inhibited
JAK2 transcription, we transfected MYC-overexpressing cells with
JAK2 prom-Luc vectors harboring point mutations in the three
MYC binding sites (Fig. 5A). Although insertion of a point muta-
tion in the second MYC binding site resulted in more than a 1.5-fold
increase in JAK2 prom-Luc luciferase activity (paired t test, P ¼
0.003), point mutations in the two other MYC binding sites, alone
or combined with a point mutation in the second MYC binding site,
did not significantly affect luciferase activity (Fig. 5C). Replacing
three nucleotides in each putative binding site yielded similar
results (Supplementary Fig. S7A and S7B). Although we demon-
strated that MYC directly downregulated JAK2 transcription
through a specific MYC E-box variant in the JAK2 promoter, its
luciferase activity level was not restored to the level observed in
Mock-overexpressing cell lines, suggesting both direct and indirect
JAK2 inhibition mechanisms due to MYC overexpression.

To assert that the MYC-mediated JAK2 transcriptional repression
was relevant in experimental models other than MYC overexpression,
wemeasured the effect ofMYCsilencing on JAK2 expression and IFNg
responsiveness. Heterodimerization of MYC with MAX (MYC-
associated factor X) is essential for MYC association with E-box DNA
sequences (49). Thus, we examined the effect of MYC and MAX
silencing on JAK2 expression and IFNg responsiveness.Melanoma cell
lines transfected with MYC or MAX siRNA demonstrated reduced
mRNA and protein expression ofMYC andMAX compared with cells
transfected with control siRNA (Supplementary Fig. S7C and S7D).
This reduction in MYC and MAX expression was accompanied by a
2-fold upregulation in JAK2 mRNA expression (paired t test, P <
0.0001 and P ¼ 0.002 for MYC and MAX, respectively; Fig. 5D).
Compared with control siRNA transfected cells, MYC orMAX siRNA
transfected cells demonstrated increased IFNg responsiveness, as
evident by increased mRNA expression of the IFNg response genes
JAK2 and IFIH1 following IFNg exposure for 48 hours (paired t test,

P< 0.01 for all genes;Fig. 5D). Taken together,MYCorMAX silencing
results in increased JAK2 expression and IFNg responsiveness.

Finally, the success of immunotherapy is dependent upon recog-
nition of the tumor cells by the immune system and successful
antitumor T-cell effector functions. To assess the effect of MYC
expression on T-cell effector functions, we measured IFNg secretion
following coculture of melanoma cells with autologous TILs in a 2.5:1
effector to target cell ratio for 18 hours. Coculture of TILs with MYC-
overexpressing cells resulted in a 6-fold reduction in IFNg secretion
comparedwith coculturewithMock-overexpressing cells (paired t test,
P < 0.0001; Fig. 5E). This inhibition of IFNg secretion could be
partially rescued by MAX silencing, as evident by a 3-fold increase
in IFNg secretion in cocultures of TILs with MYC-overexpressing
melanoma cells transfected with MAX siRNA compared with cells
transfected with control siRNA (paired t test, P ¼ 0.002; Fig. 5E).
We also measured IFNg secretion from TILs cocultured with mela-
noma cells pretreated with the JAK2 inhibitor ruxolitinib. TILs
cocultured with ruxolitinib-treated melanoma cells exhibited
reduced IFNg secretion (Supplementary Fig. S7E), similar to the
reduction observed in TILs cultured with MYC-overexpressing
cells. To assess the effect of MYC overexpression on tumor recog-
nition by cytotoxic TILs, we measured the mean fluorescence
intensity and percent positivity of CD8þ TILs for CD137 (4-1BB)
and CD107a, both markers for tumor-reactive T cells (50, 51),
following coculture of autologous TILs with MYC and Mock-
overexpressing melanomas for 18 and 6 hours, respectively. Both
TIL 53 and TIL 90 exhibited reduced expression of CD137 and
CD107a in CD8þ TILs, whereas TIL 90 also exhibited a reduction in
the percent of marker positive CD8þ TILs (Fig. 5F; Supplementary
Fig. S8). Thus, MYC activation in melanoma cells hinders both
tumor recognition and the effector functions of TILs.

In conclusion, we suggest that MYC upregulation induces a vicious
cycle of melanoma-intrinsic IFNg resistance through MYC/MAX
heterodimerization-dependent repression of JAK2 transcription, com-
bined with reduced TIL effector function and IFNg secretion, thus
cumulating in inhibition of the antitumor immune response and
immunotherapy failure.

Discussion
Because the introduction of immunotherapy as a pillar of advanced

melanoma treatment, numerous articles have tried to unravel the
mechanisms that govern the response and resistance to immunother-
apy. Although there is a growing consensus that high tumor muta-
tional load, TILs, IFNg signaling, and upregulation of the antigen
processing and presentation pathway are all critical for immunother-
apy response (52), the mechanisms which govern the resistance to
immunotherapy are still largely unknown. Although several oncogenic
pathways such as WNT/b-catenin, cyclin-dependent kinase 4/6, and
the mitogen-activated kinase pathways were implicated as deterrents
to immunotherapy (15), we are still unable to predict which patients
will benefit from immunotherapy. To further investigate the pathways
associated with immunotherapy response and resistance, we per-
formed both proteome (17) and transcriptome profiling of preimmu-
notherapy tumor biopsies from patients with advanced melanoma
treated with either TIL ACT or PD-1 blockade. We identified three
distinct gene clusters which differentiated responders from nonre-
sponders to immunotherapy—Melanoma response and Leukocyte
marker gene clusters, which were upregulated in responders and were
enriched for immune-related pathways such as immune effector
process and IFN response genes, and the Melanoma resistance gene
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Figure 5.

MYC induces JAK2 transcription downregulation and IFNg resistance through MYC-MAX heterodimerization. A, Top: MYC binding motifs within the JAK2 promoter.
Bottom: Point mutations (C to A) inserted into the three MYC bindingmotifs within the JAK2 promoter. B, Luciferase activity of MYC and Mock-overexpressing cells
transfected with a luciferase reporter vector under the control of JAK2 promoter (JAK2 prom-Luc). Each line represents a single experiment. All firefly luciferase
activity measurements in B and Cwere normalized to Renilla luciferase activity as an internal control. C, Luciferase activity of MYC-overexpressing cells transfected
with JAK2 prom-Luc vectors harboring point mutations (C to A) in the three MYC binding sites [mut 7, mut 672, mut 754, and triple mutant (Tri.Mut)] relative to cells
transfectedwith awild-type JAK2 prom-Luc vector (JAK2 prom).D,RelativemRNA expression via qRT-PCR of the IFNg response genes JAK2 and IFIH1 inmelanoma
cell lines 72 hours after transfectionwithMYC,MAX, or control siRNA.Middle and right: 24 hours following siRNA transfection, cellswere exposed to 10 ng/mL of IFNg
for 48 hours. E, IFNg secretion in supernatant of Mel 53 and Mel 90 MYC andMock-overexpressing cells coincubated with autologous TILs in a 2.5:1 effector to target
cell ratio for 18 hours assessed via ELISAs. 24 hours prior to coincubationwith TILs,melanoma cellswere transfectedwith control orMAX siRNA. Each line represents a
single experiment. F, Left: Percent of CD8þ TILs positive for CD137 (4-1BB) or CD107a in Mel 53 and Mel 90 MYC and Mock-overexpressing cells coincubated with
autologous TILs in a 2.5:1 effector to target cell ratio for 18 and 6 hours, respectively, assessed via flow cytometry. Right: The mean fluorescence intensity (MFI) fold
change over control of CD137 and CD107a in CD8þ TILs. P values inB–Fwere computed using a paired t test. Bar plot data are represented asmeanþ SE, where each
dot represents a single experiment. � , P < 0.05; �� , ¼ P <0.01; ��� , P < 0.001; ���� , P < 0.0001.
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cluster, which was downregulated in responders and enriched for
oncogenic pathways such as cell cycle and dedifferentiation. These
results are in agreement with several other articles that identify IFNg
signaling, immune infiltration, and oncogenic pathways as major
determinants for immunotherapy outcome (10, 12–16). The Mel-
anoma response and IFN resistance gene clusters were strongly
inversely correlated in several melanoma bulk RNA-seq datasets, as
well as within a scRNA-seq dataset of melanoma cells (16, 25), and
exhibited comparable or better performance as predictors of overall
survival in immunotherapy-treated patients than tumor immune
cell infiltration assessed by gene expression signatures. Using IPA
upstream regulator analysis, we identified IFNg and MYC as the
major transcription regulators associated with the Melanoma
response and resistance gene clusters, respectively. Furthermore,
MYC nuclear staining was upregulated in melanoma pretreatment
tumor biopsies of nonresponders to PD-1 blockade. Thus, we
identified two melanoma-intrinsic and mutually exclusive gene
programs that were controlled by IFNg and MYC and the rela-
tionship to immunotherapy outcome.

Although IFNg is a known key mediator of antitumor immunity
and immunotherapy response through activation of JAK-STAT sig-
naling (11, 13), the role ofMYC in immunotherapy resistance is largely
unknown. MYC, one of the most common deregulated oncogenes in a
wide variety of cancers (53), is involved in both tumor initiation and
maintenance through several mechanisms, including increased cellu-
lar proliferation and growth, enhanced transcription and protein
synthesis, blocking of differentiation, altered cellular metabolism,
and activation of angiogenesis (54). Another importantMYC function
in tumorigenesis was highlighted, as MYC was found to modulate
immune regulatory molecules, thereby contributing to suppression
of antitumor immune responses (55). A recent article detected enrich-
ment forMYC targets in a scRNA-seq profiles of immune checkpoint–
resistant melanoma tumors (16), and other publications have
demonstrated that inhibiting MYC signaling through a direct
inhibitor or through epigenetic therapies can reverse immune
evasion and sensitize tumors to immunotherapy (56, 57). A recent
article has also identified several transcriptional programs, includ-
ing CTNNB1, KLF4, HIF1A, sonic hedgehog, and MYC as partic-
ularly important, as these programs associated with immune exclu-
sion in a pan-cancer analysis (53). Interestingly, the authors suggest
substantial cross-talk between those pathways and an additive
impact on immune exclusion across cancers, with MYC signaling
identified as perhaps the most important node associated with
immune exclusion. Taken together with a recent review, which
identifies MYC as a global regulator of immune responses (58), it is
possible that oncogenic pathway converge through MYC activation
to elicit immune exclusion and immunotherapy resistance.

Although several recent articles identify MYC as a facilitator of
immune exclusion, how MYC induces immunotherapy resistance is
largely unknown. Here, we present a novel mechanism of MYC-
induced immunotherapy resistance through an inhibitory effect on
JAK2, an important protein in the IFNg signaling cascade. MYC-
overexpressing cells from Immune low, patient-derivedmelanoma cell
lines exhibited a significant reduction in IFNg responsiveness, which
associated with downregulation of JAK2 expression. We additionally
observed reduced luciferase activity in MYC-overexpressing cells
transfected with a luciferase reporter vector under the control of JAK2
promoter. This reduction in luciferase activity was partially reversed
upon insertion of a point mutation in the second MYC E-box binding
site identified in the JAK2 promoter. Further solidifying the relation-
ship between MYC activation, JAK2 downregulation, and immuno-

therapy resistance, we detected that inhibition of MYC or its cofactor
MAX through siRNA targeting resulted in increased JAK2 expression
and IFNg responsiveness of transfected cells. Finally, we observed
reduced tumor recognition and T-cell effector functions in autologous
TILs coincubated with MYC-overexpressing melanomas, which were
partially rescued byMAX silencing. These findings shed light on a new
immunotherapy and IFNg resistance mechanism and suggest that
immunotherapy-resistant patients might benefit from a combination
of immunotherapy and MYC inhibiting drugs.

Several articles that profiled the transcriptomes of responders and
nonresponders to immunotherapy report an association between
preexisting immune activation gene signatures and clinical bene-
fit (10, 12, 22, 23). In agreement, we describe immune infiltration as
a favorable feature associated with immunotherapy response. How-
ever, we suggest that the two melanoma-intrinsic mutually exclusive
cell programs, which are regulated by IFNg andMYC, are also of great
importance to immunotherapy outcome. Our dataset is unique as we
provide the first immunotherapy cohort with both transcriptome and
proteome (17) profiling. Whereas the major advantage of proteomic
profiling is that it quantifies the main functional molecules of the cells,
we utilized the deep coverage of RNA-seq to complement the previous
proteomic findings and to better assess the importance of immune-
related and lowly expressed genes, such as cytokines, signal transduc-
tion molecules, and immune cell activation, to immunotherapy out-
come. In concordance with a previously published article (37), we
report that protein levels of proteins involved in induced processes
such as epithelial–mesenchymal transition, hypoxia, and IFN signaling
are mostly regulated by mRNA abundance, whereas protein levels for
cell homeostasis processes are mostly posttranscriptional, as reflected
by enrichment for these processes in cells with low correlation between
protein and mRNA levels.

In conclusion, we report the identification of two mutually
exclusive melanoma-intrinsic gene programs that represent IFNg
response and resistance and the association with immunotherapy
outcome. We identified MYC as the major transcription regulator
associated with IFNg resistance through JAK2 transcription inhi-
bition. Thus, further research on the effect of MYC inhibition in
immunotherapy-resistant patients is warranted to improve the
clinical outcomes of these patients.
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